## An overview of the Breuil-Schneider conjecture

Claus Sorensen

## UC San Diego

July 24, 2023

Claus Sorensen (UC San Diego)

An overview of the Breuil-Schneider conjecture

ヘロト ヘ回ト ヘヨト ヘヨト

July 24, 2023

Let  $K/\mathbb{Q}_p$  be a finite extension.

 $\Gamma_K = \operatorname{Gal}(\overline{K}/K) = \operatorname{absolute} \operatorname{Galois} \operatorname{group}$   $\cup$   $W_K = \operatorname{Weil} \operatorname{group}$   $\cup$  $I_K = \operatorname{Gal}(\overline{K}/K^{\operatorname{ur}}) = \operatorname{inertia} \operatorname{group}.$ 

Let  $K/\mathbb{Q}_p$  be a finite extension.

$$\Gamma_K = \operatorname{Gal}(\overline{K}/K) = \operatorname{absolute \ Galois \ group} \cup W_K = \operatorname{Weil \ group} \cup I_K = \operatorname{Gal}(\overline{K}/K^{\operatorname{ur}}) = \operatorname{inertia \ group}.$$

These groups fit in the diagram



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

V = a finite-dimensional vector space over  $\overline{\mathbb{Q}}_{\ell}$ ,

 $n = \dim_{\overline{\mathbb{Q}}_{\ell}}(V).$ 

<ロ> (四) (四) (三) (三) (三)

V = a finite-dimensional vector space over  $\overline{\mathbb{Q}}_{\ell}$ ,

 $n = \dim_{\overline{\mathbb{Q}}_{\ell}}(V).$ 

A Galois representation on V is a continuous homomorphism

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_\ell}(V).$ 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$V = a$$
 finite-dimensional vector space over  $\overline{\mathbb{Q}}_{\ell}$ ,

 $n = \dim_{\overline{\mathbb{Q}}_{\ell}}(V).$ 

A *Galois representation* on *V* is a continuous homomorphism

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_\ell}(V).$ 

– Choosing a basis for *V* lets us identify the target with  $GL_n(\overline{\mathbb{Q}}_\ell)$ .

<ロ> (四) (四) (三) (三) (三)

July 24, 2023

$$V = a$$
 finite-dimensional vector space over  $\overline{\mathbb{Q}}_{\ell}$ ,

 $n = \dim_{\overline{\mathbb{Q}}_{\ell}}(V).$ 

A *Galois representation* on *V* is a continuous homomorphism

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_\ell}(V).$ 

– Choosing a basis for *V* lets us identify the target with  $GL_n(\overline{\mathbb{Q}}_\ell)$ .

\* **Example**. The cyclotomic character  $\chi_{cyc} : \Gamma_K \longrightarrow \mathbb{Q}_{\ell}^{\times}$ .

イロト 不得 とくき とくき とうき

$$V = a$$
 finite-dimensional vector space over  $\overline{\mathbb{Q}}_{\ell}$ ,

 $n = \dim_{\overline{\mathbb{Q}}_{\ell}}(V).$ 

A *Galois representation* on *V* is a continuous homomorphism

$$\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_\ell}(V).$$

– Choosing a basis for *V* lets us identify the target with  $GL_n(\overline{\mathbb{Q}}_\ell)$ .

\* **Example**. The cyclotomic character  $\chi_{cyc} : \Gamma_K \longrightarrow \mathbb{Q}_{\ell}^{\times}$ .

**\* Example**. *A*/*K* an abelian variety,  $g = \dim(A)$ . The Tate module

$$T_{\ell}A = \varprojlim_{r} A[\ell^{r}]$$

carries a  $\Gamma_K$ -action. Gives a 2*g*-dimensional representation  $V_\ell A = \mathbb{Q}_\ell \otimes_{\mathbb{Z}_\ell} T_\ell A$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

\* **Example**. *X*/*K* a smooth proper variety;  $\Gamma_K$  acts on  $\ell$ -adic cohomology

$$H^i(X_{\overline{K}},\mathbb{Q}_\ell)=\mathbb{Q}_\ell\otimes_{\mathbb{Z}_\ell} \varprojlim_r H^i_{\mathrm{\acute{e}t}}(X_{\overline{K}},\mathbb{Z}/\ell^r\mathbb{Z}).$$

ヘロト ヘロト ヘヨト ヘヨト

\* **Example**. *X*/*K* a smooth proper variety;  $\Gamma_K$  acts on  $\ell$ -adic cohomology

$$H^i(X_{\overline{K}},\mathbb{Q}_\ell)=\mathbb{Q}_\ell\otimes_{\mathbb{Z}_\ell} \varprojlim_r H^i_{\mathrm{\acute{e}t}}(X_{\overline{K}},\mathbb{Z}/\ell^r\mathbb{Z}).$$

In the previous example X = A,

$$H^{i}(A_{\overline{K}}, \mathbb{Q}_{\ell}) \simeq \bigwedge^{i} (V_{\ell}A)^{\vee}.$$

ヘロト ヘロト ヘヨト ヘヨト

\* **Example**. *X*/*K* a smooth proper variety;  $\Gamma_K$  acts on  $\ell$ -adic cohomology

$$H^i(X_{\overline{K}}, \mathbb{Q}_\ell) = \mathbb{Q}_\ell \otimes_{\mathbb{Z}_\ell} \varprojlim_r H^i_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Z}/\ell^r \mathbb{Z}).$$

In the previous example X = A,

$$H^{i}(A_{\overline{K}}, \mathbb{Q}_{\ell}) \simeq \bigwedge^{i} (V_{\ell}A)^{\vee}.$$

– For any Galois representation  $\rho$  as above,

$$\rho \rightsquigarrow \pi_{sm}(\rho) = a \text{ smooth representation of } GL_n(K).$$

This is essentially the local Langlands correspondence.

イロト イポト イヨト イヨト

July 24, 2023

```
\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).
```

◆□ > ◆□ > ◆豆 > ◆豆 > 一豆

```
\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).
```

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N)

$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).$$

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N) – which means:

•  $r: W_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{O}}_{\ell}}(V)$  is a homomorphism with open kernel;

<ロ> (四) (四) (三) (三) (三)

$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).$$

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N) – which means:

•  $r: W_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{O}}_{\ell}}(V)$  is a homomorphism with open kernel;

•  $N \in \operatorname{End}_{\overline{\mathbb{Q}}_e}(V)$  is a (necessarily nilpotent) linear operator such that

$$r(w) \circ N \circ r(w)^{-1} = |w|N.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).$$

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N) – which means:

•  $r: W_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_e}(V)$  is a homomorphism with open kernel;

•  $N \in \operatorname{End}_{\overline{\mathbb{Q}}_e}(V)$  is a (necessarily nilpotent) linear operator such that

$$r(w) \circ N \circ r(w)^{-1} = |w|N.$$

The topology of  $\overline{\mathbb{Q}}_{\ell}$  is irrelevant! May identify  $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$  as fields.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).$$

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N) – which means:

•  $r: W_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_e}(V)$  is a homomorphism with open kernel;

•  $N \in \operatorname{End}_{\overline{\mathbb{O}}_{e}}(V)$  is a (necessarily nilpotent) linear operator such that

$$r(w) \circ N \circ r(w)^{-1} = |w|N.$$

The topology of  $\overline{\mathbb{Q}}_{\ell}$  is irrelevant! May identify  $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$  as fields.

\* **Recipe**.  $\rho(\phi^s \sigma) = r(\phi^s \sigma) \exp(t_\ell(\sigma)N), \quad s \in \mathbb{Z}, \quad \sigma \in I_K.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023 5/25

$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho).$$

– Here  $WD(\rho)$  is a *Weil-Deligne* representation (r, N) – which means:

•  $r: W_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_e}(V)$  is a homomorphism with open kernel;

•  $N \in \operatorname{End}_{\overline{\mathbb{O}}_e}(V)$  is a (necessarily nilpotent) linear operator such that

$$r(w) \circ N \circ r(w)^{-1} = |w|N.$$

The topology of  $\overline{\mathbb{Q}}_{\ell}$  is irrelevant! May identify  $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$  as fields.

\* **Recipe**.  $\rho(\phi^s \sigma) = r(\phi^s \sigma) \exp(t_\ell(\sigma)N), \quad s \in \mathbb{Z}, \quad \sigma \in I_K.$ 

(Here  $\phi \in W_K$  is a lift of Frobenius, and  $t_\ell : I_K \twoheadrightarrow \mathbb{Z}_\ell$ .)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $\implies \pi_{sm}(\rho)$  has a  $GL_n(K)$ -stable  $\overline{\mathbb{Z}}_{\ell}$ -lattice  $\Lambda$ .

ヘロト ヘロト ヘヨト ヘヨト

 $\implies \pi_{\mathrm{sm}}(\rho)$  has a  $\mathrm{GL}_n(K)$ -stable  $\overline{\mathbb{Z}}_{\ell}$ -lattice  $\Lambda$ .

( $\Lambda$  is free over  $\overline{\mathbb{Z}}_{\ell}$ , and  $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{sm}(\rho)$ . Any two are commensurable.)

イロト イポト イヨト イヨト 三日

July 24, 2023

 $\implies \pi_{\mathrm{sm}}(\rho)$  has a  $\mathrm{GL}_n(K)$ -stable  $\overline{\mathbb{Z}}_{\ell}$ -lattice  $\Lambda$ .

( $\Lambda$  is free over  $\overline{\mathbb{Z}}_{\ell}$ , and  $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{sm}(\rho)$ . Any two are commensurable.)

The choice of  $\Lambda$  gives a  $GL_n(K)$ -invariant *norm*  $\| \cdot \|$  on  $\pi_{sm}(\rho)$ ,

$$||x|| := \inf\{|c| : x \in c\Lambda\}.$$

(The "gauge" of  $\Lambda$ .)

イロト イボト イヨト イヨト 一日

July 24, 2023

 $\implies \pi_{\mathrm{sm}}(\rho)$  has a  $\mathrm{GL}_n(K)$ -stable  $\overline{\mathbb{Z}}_{\ell}$ -lattice  $\Lambda$ .

( $\Lambda$  is free over  $\overline{\mathbb{Z}}_{\ell}$ , and  $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{sm}(\rho)$ . Any two are commensurable.)

The choice of  $\Lambda$  gives a  $GL_n(K)$ -invariant *norm*  $\|\cdot\|$  on  $\pi_{sm}(\rho)$ ,

$$||x|| := \inf\{|c| : x \in c\Lambda\}.$$

(The "gauge" of  $\Lambda$ .)

**\* Breuil-Schneider**. What's the story for  $\ell = p$ ?

イロト イボト イヨト イヨト 一日

July 24, 2023

## From now on $\ell = p$ .

Claus Sorensen (UC San Diego)

An overview of the Breuil-Schneider conjecture

July 24, 2023 7/25

From now on 
$$| \ell = p |$$

Start with a potentially semistable (and regular) Galois representation

$$\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_v}(V).$$

The most important examples are  $\rho \subset H^i(X_{\overline{K}}, \mathbb{Q}_p)$  for some variety X/K.

・ロト ・四ト ・ヨト ・ヨ

From now on  $| \ell = p |$ .

Start with a potentially semistable (and regular) Galois representation

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_p}(V).$ 

The most important examples are  $\rho \subset H^i(X_{\overline{K}}, \mathbb{Q}_p)$  for some variety X/K.

- This time we will associate two representations:

•  $\rho \rightsquigarrow \pi_{sm}(\rho) = a \ smooth \ representation \ of \ GL_n(K).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023 7/25

From now on  $| \ell = p |$ .

Start with a potentially semistable (and regular) Galois representation

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_p}(V).$ 

The most important examples are  $\rho \subset H^i(X_{\overline{K}}, \mathbb{Q}_p)$  for some variety X/K.

- This time we will associate two representations:

•  $\rho \rightsquigarrow \pi_{sm}(\rho) = a \ smooth \ representation \ of \ GL_n(K).$ 

•  $\rho \rightsquigarrow \pi_{alg}(\rho) = an algebraic$  representation of  $GL_n(K)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

From now on  $| \ell = p |$ .

Start with a potentially semistable (and regular) Galois representation

 $\rho: \Gamma_K \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_p}(V).$ 

The most important examples are  $\rho \subset H^i(X_{\overline{K}}, \mathbb{Q}_p)$  for some variety X/K.

- This time we will associate two representations:

• 
$$\rho \rightsquigarrow \pi_{sm}(\rho) = a \ smooth \ representation \ of \ GL_n(K).$$

• 
$$\rho \rightsquigarrow \pi_{alg}(\rho) = an algebraic$$
 representation of  $GL_n(K)$ .

Then, we combine them into a *locally algebraic* representation:

$$BS(\rho) == \pi_{alg}(\rho) \otimes \pi_{sm}(\rho).$$

(A  $\overline{\mathbb{Q}}_p$ -vector space, with  $GL_n(K)$  acting diagonally.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\|\cdot\|$  *on*  $BS(\rho)$ *.* 

-

ヘロト ヘアト ヘヨト ヘ

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>n</sub>(K)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>*n*</sub>(*K*)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

– in general they are *not* all commensurable; even for  $GL_2(\mathbb{Q}_p)$ .

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>*n*</sub>(*K*)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

– in general they are *not* all commensurable; even for  $GL_2(\mathbb{Q}_p)$ .

\* **Motivation**. For a two-dimensional *crystalline* representation  $\rho$  of  $\Gamma_{\mathbb{Q}_p}$ ,

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>n</sub>(K)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

– in general they are *not* all commensurable; even for  $GL_2(\mathbb{Q}_p)$ .

\* **Motivation**. For a two-dimensional *crystalline* representation  $\rho$  of  $\Gamma_{\mathbb{Q}_p}$ ,

• Such lattices exist, and any two of them are commensurable;

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>n</sub>(K)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

– in general they are *not* all commensurable; even for  $GL_2(\mathbb{Q}_p)$ .

\* **Motivation**. For a two-dimensional *crystalline* representation  $\rho$  of  $\Gamma_{\mathbb{Q}_p}$ ,

- Such lattices exist, and any two of them are commensurable;
- The completion  $\widehat{BS}(\rho)$  is the *p*-adic local Langlands correspondence.

Conjecture (Breuil-Schneider)

*There exists a*  $GL_n(K)$ *-invariant norm*  $\| \cdot \|$  *on*  $BS(\rho)$ *.* 

Equivalently, BS( $\rho$ ) should have a GL<sub>n</sub>(K)-stable  $\overline{\mathbb{Z}}_p$ -lattice.

- in general they are *not* all commensurable; even for  $GL_2(\mathbb{Q}_p)$ .
- \* **Motivation**. For a two-dimensional *crystalline* representation  $\rho$  of  $\Gamma_{\mathbb{Q}_p}$ ,
  - Such lattices exist, and any two of them are commensurable;
  - The completion  $\widehat{BS}(\rho)$  is the *p*-adic local Langlands correspondence.
- + local-global compatibility  $\rightsquigarrow$  Fontaine-Mazur conjecture (for odd  $\rho$ ).
◆□→ ◆□→ ◆三→ ◆三→

•  $\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$ ,

- $\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$ ,
- $\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• 
$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$$
,

• 
$$\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$$

 $WD(\rho)$  and  $HT(\rho)$  come from *p*-adic Hodge theory.

ヘロト ヘロト ヘヨト ヘヨト

• 
$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$$
,

• 
$$\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$$

 $WD(\rho)$  and  $HT(\rho)$  come from *p*-adic Hodge theory.

– A quick <u>sketch</u>:

ヘロト ヘロト ヘヨト ヘヨト

• 
$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$$
,

• 
$$\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$$

 $WD(\rho)$  and  $HT(\rho)$  come from *p*-adic Hodge theory.

– A quick <u>sketch</u>:

For simplicity assume  $K = \mathbb{Q}_p$ , and  $\rho$  is semistable.

ヘロト ヘロト ヘヨト ヘヨト

- 3

9/25

July 24, 2023

• 
$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$$
,

• 
$$\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$$

 $WD(\rho)$  and  $HT(\rho)$  come from *p*-adic Hodge theory.

– A quick <u>sketch</u>:

For simplicity assume  $K = \mathbb{Q}_p$ , and  $\rho$  is semistable.

Fontaine,  $\rho \rightsquigarrow D = D_{st}(\rho) = (B_{st} \otimes_{\mathbb{Q}_p} V)^{\Gamma_K}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

July 24, 2023

• 
$$\rho \rightsquigarrow WD(\rho) \rightsquigarrow \pi_{sm}(\rho)$$
,

• 
$$\rho \rightsquigarrow \operatorname{HT}(\rho) \rightsquigarrow \pi_{\operatorname{alg}}(\rho).$$

 $WD(\rho)$  and  $HT(\rho)$  come from *p*-adic Hodge theory.

– A quick <u>sketch</u>:

For simplicity assume  $K = \mathbb{Q}_p$ , and  $\rho$  is semistable.

Fontaine, 
$$\rho \rightsquigarrow D = D_{st}(\rho) = (B_{st} \otimes_{\mathbb{Q}_p} V)^{\Gamma_K}$$
.

This is an *n*-dimensional  $\overline{\mathbb{Q}}_p$ -vector space with "linear algebra data"

 $(\phi, N, \operatorname{Fil}^i D).$ 

<ロ> (四) (四) (三) (三) (三)

- $\phi$  = Frobenius  $\frown D$ ,
- N =monodromy  $\frown D$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  a decreasing filtration.

イロト イロト イヨト イヨト

- $\phi$  = Frobenius  $\frown D$ ,
- $N = \text{monodromy} \curvearrowright D$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  a decreasing filtration.

They satisfy certain compatibility conditions:

- $N\phi = p\phi N$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  is *admissible* which means:

イロト イポト イヨト イヨト

July 24, 2023

- $\phi$  = Frobenius  $\frown D$ ,
- $N = \text{monodromy} \frown D$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  a decreasing filtration.

They satisfy certain compatibility conditions:

•  $N\phi = p\phi N$ ,

•  ${Fil}^{i}D_{i\in\mathbb{Z}}$  is *admissible* – which means:

i.  $t_H(D) = t_N(D);$ 

イロト イポト イヨト イヨト

July 24, 2023

- $\phi$  = Frobenius  $\frown D$ ,
- $N = \text{monodromy} \frown D$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  a decreasing filtration.

They satisfy certain compatibility conditions:

- $N\phi = p\phi N$ ,
- ${Fil}^{i}D_{i\in\mathbb{Z}}$  is *admissible* which means:
  - i.  $t_H(D) = t_N(D);$
  - ii.  $t_H(D') \leq t_N(D')$  for all  $(\phi, N)$ -submodules  $D' \subseteq D$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023

- $\phi$  = Frobenius  $\frown D$ ,
- $N = \text{monodromy} \curvearrowright D$ ,
- ${Fil^iD}_{i\in\mathbb{Z}}$  a decreasing filtration.

They satisfy certain compatibility conditions:

•  $N\phi = p\phi N$ ,

•  ${Fil}^{i}D_{i\in\mathbb{Z}}$  is *admissible* – which means:

i.  $t_H(D) = t_N(D);$ 

ii.  $t_H(D') \leq t_N(D')$  for all  $(\phi, N)$ -submodules  $D' \subseteq D$ .

(Here  $t_N$  depends only on  $\phi$ , whereas  $t_H$  depends only on the filtration.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $HT(\rho) = \{i_1, \dots, i_n\}$  are the *jumps* of the filtration (in increasing order).

◆□→ ◆□→ ◆三→ ◆三→

 $HT(\rho) = \{i_1, \dots, i_n\}$  are the *jumps* of the filtration (in increasing order). Saying  $\rho$  is *regular* means they are <u>distinct</u> – in other words

$$\dim_{\overline{\mathbb{Q}}_p} \operatorname{Fil}^i D/\operatorname{Fil}^{i+1} D = 1, \quad \forall i \in \operatorname{HT}(\rho).$$

ヘロト ヘロト ヘヨト ヘヨト

 $HT(\rho) = \{i_1, \dots, i_n\}$  are the *jumps* of the filtration (in increasing order). Saying  $\rho$  is *regular* means they are <u>distinct</u> – in other words

$$\dim_{\overline{\mathbb{Q}}_p} \operatorname{Fil}^i D/\operatorname{Fil}^{i+1} D = 1, \quad \forall i \in \operatorname{HT}(\rho).$$

The Hodge-Tate weights give a tuple

$$\mathbf{a} = (a_1, a_2, \dots, a_n) := -(i_n, i_{n-1}, \dots, i_1) - (0, 1, \dots, n-1).$$

This is a *dominant* weight for  $GL_n$ . (I.e.,  $a_1 \le a_2 \le \cdots \le a_n$ .)

<ロ> (四) (四) (三) (三) (三)

July 24, 2023

 $HT(\rho) = \{i_1, \dots, i_n\}$  are the *jumps* of the filtration (in increasing order). Saying  $\rho$  is *regular* means they are <u>distinct</u> – in other words

$$\dim_{\overline{\mathbb{Q}}_p} \operatorname{Fil}^i D/\operatorname{Fil}^{i+1} D = 1, \quad \forall i \in \operatorname{HT}(\rho).$$

The Hodge-Tate weights give a tuple

$$\mathbf{a} = (a_1, a_2, \dots, a_n) := -(i_n, i_{n-1}, \dots, i_1) - (0, 1, \dots, n-1).$$

This is a *dominant* weight for  $GL_n$ . (I.e.,  $a_1 \le a_2 \le \cdots \le a_n$ .)

 $\pi_{alg}(\rho)$  = irreducible algebraic rep of GL<sub>n</sub> with highest weight **a**.

イロト イボト イヨト イヨト 一日

July 24, 2023

• 
$$r(w) = \phi^{-d(w)}$$
 where  $d: W_K \twoheadrightarrow \mathbb{Z}$ ,

•  $N = \text{monodromy} \curvearrowright D$ .

(When  $\rho$  is semistable, ker(r) =  $I_K$ . When  $\rho$  is crystalline, N = 0.)

∃ <200</p>

イロト イロト イヨト イヨト

• 
$$r(w) = \phi^{-d(w)}$$
 where  $d: W_K \twoheadrightarrow \mathbb{Z}$ ,

•  $N = \text{monodromy} \curvearrowright D$ .

(When  $\rho$  is semistable, ker(r) =  $I_K$ . When  $\rho$  is crystalline, N = 0.)

– The Frobenius-semisimplification  $WD(\rho)^{F-ss} = (r^{ss}, N)$  gives  $\pi_{sm}(\rho)$  via

the generic local Langlands correspondence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• 
$$r(w) = \phi^{-d(w)}$$
 where  $d: W_K \twoheadrightarrow \mathbb{Z}$ ,

•  $N = \text{monodromy} \curvearrowright D$ .

(When  $\rho$  is semistable, ker(r) =  $I_K$ . When  $\rho$  is crystalline, N = 0.)

– The Frobenius-semisimplification  $WD(\rho)^{F-ss} = (r^{ss}, N)$  gives  $\pi_{sm}(\rho)$  via

the generic local Langlands correspondence.

What's the generic correspondence?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023

• 
$$r(w) = \phi^{-d(w)}$$
 where  $d: W_K \twoheadrightarrow \mathbb{Z}$ ,

•  $N = \text{monodromy} \curvearrowright D$ .

(When  $\rho$  is semistable, ker(r) =  $I_K$ . When  $\rho$  is crystalline, N = 0.)

– The Frobenius-semisimplification  $WD(\rho)^{F-ss} = (r^{ss}, N)$  gives  $\pi_{sm}(\rho)$  via

the generic local Langlands correspondence.

What's the generic correspondence? Roughly, in the Langlands classification,

$$\pi_{\mathrm{sm}}(\rho) = \mathrm{Ind}_{\mathbb{P}}(Q(\Delta_1) \otimes \cdots \otimes Q(\Delta_s)) \otimes |\mathrm{det}|^{\frac{1-n}{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023

• 
$$r(w) = \phi^{-d(w)}$$
 where  $d: W_K \twoheadrightarrow \mathbb{Z}$ ,

•  $N = \text{monodromy} \curvearrowright D$ .

(When  $\rho$  is semistable, ker(r) =  $I_K$ . When  $\rho$  is crystalline, N = 0.)

– The Frobenius-semisimplification  $\mathrm{WD}(\rho)^{F\text{-ss}} = (r^{\mathrm{ss}}, N)$  gives  $\pi_{\mathrm{sm}}(\rho)$  via

the generic local Langlands correspondence.

What's the generic correspondence? Roughly, in the Langlands classification,

$$\pi_{\mathrm{sm}}(\rho) = \mathrm{Ind}_P(Q(\Delta_1) \otimes \cdots \otimes Q(\Delta_s)) \otimes |\mathrm{det}|^{\frac{1-n}{2}}$$

(a generic representation, i.e.  $\exists$  Whittaker model, but possibly reducible).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The original Breuil-Schneider conjecture had a converse:

イロト イロト イヨト イヨト

The original Breuil-Schneider conjecture had a converse:

Keep  $K = \mathbb{Q}_p$  for simplicity. Given  $HT = \{i_1, \dots, i_n\}$  and WD = (r, N).

ヘロト ヘロト ヘヨト ヘヨト

- 32

13 / 25

July 24, 2023

The original Breuil-Schneider conjecture had a converse:

Keep  $K = \mathbb{Q}_p$  for simplicity. Given  $HT = \{i_1, \dots, i_n\}$  and WD = (r, N).

As above, form the locally algebraic representation  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$ .

イロト イポト イヨト イヨト

- 32

13/25

July 24, 2023

The original Breuil-Schneider conjecture had a converse:

Keep  $K = \mathbb{Q}_p$  for simplicity. Given  $HT = \{i_1, \dots, i_n\}$  and WD = (r, N). As above, form the locally algebraic representation  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$ . Originally, Breuil and Schneider speculated that

HT and WD arises from a  $\rho$  as above

? 🇊

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

イロト イボト イヨト イヨト 一日

The original Breuil-Schneider conjecture had a converse:

Keep  $K = \mathbb{Q}_p$  for simplicity. Given  $HT = \{i_1, \dots, i_n\}$  and WD = (r, N). As above, form the locally algebraic representation  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$ . Originally, Breuil and Schneider speculated that

HT and WD arises from a  $\rho$  as above

?  $\$  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

Here's Yongquan Hu's theorem (2009):

Theorem (Hu)

*The implication*  $\Uparrow$  *holds.* 

イロト イボト イヨト イヨト 一日

July 24, 2023

The original Breuil-Schneider conjecture had a converse:

Keep  $K = \mathbb{Q}_p$  for simplicity. Given  $HT = \{i_1, \dots, i_n\}$  and WD = (r, N). As above, form the locally algebraic representation  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$ . Originally, Breuil and Schneider speculated that

HT and WD arises from a  $\rho$  as above

?  $\$  $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

Here's Yongquan Hu's theorem (2009):

Theorem (Hu)

*The implication*  $\Uparrow$  *holds.* 

The other direction  $\Downarrow$  remains open in general.

イロン 不良 とくほう 不良 とうほ

July 24, 2023

HT and WD arises from a  $\rho$  as above

## √ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  satisfies the *Emerton condition*.

# $\checkmark \uparrow$

 $\pi_{\text{alg}}(\text{HT}) \otimes \pi_{\text{sm}}(\text{WD})$  admits a  $\text{GL}_n(K)$ -invariant norm  $\|\cdot\|$ .

イロト イロト イヨト イヨト

HT and WD arises from a  $\rho$  as above

√ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  satisfies the *Emerton condition*.

 $\checkmark \uparrow$ 

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

- What's the Emerton condition?

イロト イポト イヨト イヨト

HT and WD arises from a  $\rho$  as above

√ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  satisfies the *Emerton condition*.

 $\checkmark \uparrow$ 

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

– What's the <u>Emerton</u> condition? W = locally algebraic rep of  $GL_n(K)$ .

$$W^{N_0, Z_M^+ = \chi} \neq 0 \implies |\delta_P(z)^{-1}\chi(z)| \le 1, \ \forall z \in Z_M^+.$$

 $(P = MN \text{ parabolic}, N_0 \leq N \text{ compact open}, Z_M^+ \text{ the contracting monoid.})$ 

イロト イポト イヨト イヨト

July 24, 2023

HT and WD arises from a  $\rho$  as above

√ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  satisfies the *Emerton condition*.

 $\checkmark \uparrow$ 

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ .

– What's the <u>Emerton</u> condition? W = locally algebraic rep of  $GL_n(K)$ .

$$W^{N_0, Z_M^+ = \chi} \neq 0 \implies |\delta_P(z)^{-1}\chi(z)| \le 1, \ \forall z \in Z_M^+.$$

 $(P = MN \text{ parabolic}, N_0 ≤ N \text{ compact open}, Z_M^+ \text{ the contracting monoid.})$  $\rightarrow$  a group-theoretic formulation of the *admissibility* of {Fil<sup>*i*</sup>D}<sub>*i*∈ℤ</sub>.

### - Does the Emerton condition guarantee a norm?

・ロト ・四ト ・ヨト ・ヨト

- Does the Emerton condition guarantee a norm?

\* **Note**. For P = G the Emerton condition says that

$$W^{Z_G=\chi} \neq 0 \implies |\chi(z)| = 1, \ \forall z \in Z_G.$$

I.e., the central character of *W* is *p*-adically unitary (if it has one).

ヘロト ヘ回ト ヘヨト ヘヨト

July 24, 2023

- Does the Emerton condition guarantee a norm?

\* **Note**. For P = G the Emerton condition says that

$$W^{Z_G=\chi} \neq 0 \implies |\chi(z)| = 1, \ \forall z \in Z_G.$$

I.e., the central character of *W* is *p*-adically unitary (if it has one).

- Under favorable circumstances, this is *equivalent* to the Emerton condition!

ヘロト ヘ回ト ヘヨト ヘヨト

July 24, 2023

- Does the Emerton condition guarantee a norm?

\* **Note**. For P = G the Emerton condition says that

$$W^{Z_G=\chi} \neq 0 \implies |\chi(z)| = 1, \ \forall z \in Z_G.$$

I.e., the central character of *W* is *p*-adically unitary (if it has one).

- Under favorable circumstances, this is *equivalent* to the Emerton condition!

This happens if

$$\pi_{\rm sm}({\rm WD}) = Q(\Delta) \otimes |{\rm det}|^{\frac{1-n}{2}}$$

is a *generalized Steinberg* representation. ( $\iff$  WD is indecomposable.)

イロト イポト イヨト イヨト

July 24, 2023
#### Notation:

• 
$$n = \underbrace{m + \dots + m}_{r}$$
,  $P_m = M_m N_m$  parabolic in  $GL_n$ ,

- $\sigma$  = supercuspidal representation of  $GL_m(K)$
- $\Delta = \sigma \otimes \sigma |\cdot| \otimes \cdots \otimes \sigma |\cdot|^{r-1}$  representation of  $M_m$
- $Q(\Delta)$  = the unique irreducible quotient of  $\text{Ind}_{P_m}\Delta$

イロト イポト イヨト イヨト

#### Notation:

• 
$$n = \underbrace{m + \dots + m}_{r}$$
,  $P_m = M_m N_m$  parabolic in  $GL_n$ ,

- $\sigma$  = supercuspidal representation of  $GL_m(K)$
- $\Delta = \sigma \otimes \sigma |\cdot| \otimes \cdots \otimes \sigma |\cdot|^{r-1}$  representation of  $M_m$
- $Q(\Delta)$  = the unique irreducible quotient of  $Ind_{P_m}\Delta$

\* **Example**. (m = n) Here  $Q(\Delta)$  is a *supercuspidal* representation of  $GL_n(K)$ .

イロト イポト イヨト イヨト

- 3

16/25

July 24, 2023

#### Notation:

• 
$$n = \underbrace{m + \dots + m}_{r}$$
,  $P_m = M_m N_m$  parabolic in  $GL_n$ ,

- $\sigma$  = supercuspidal representation of  $GL_m(K)$
- $\Delta = \sigma \otimes \sigma |\cdot| \otimes \cdots \otimes \sigma |\cdot|^{r-1}$  representation of  $M_m$
- $Q(\Delta)$  = the unique irreducible quotient of  $\text{Ind}_{P_m}\Delta$

\* **Example**. (m = n) Here  $Q(\Delta)$  is a *supercuspidal* representation of  $GL_n(K)$ .

\* **Example**. (m = 1) Here  $Q(\Delta)$  is a twist of the *Steinberg* representation;

{smooth functions on  $B \setminus G$ }  $\twoheadrightarrow$  St<sub>G</sub>.

イロト イボト イヨト イヨト 一日

July 24, 2023

Here's my result from ten years ago (2013):

Theorem (S.)

The Breuil-Schneider conjecture holds when WD is indecomposable.

-

・ロト ・ 日 ・ ・ ヨ ・ ・

Here's my result from ten years ago (2013):

Theorem (S.)

The Breuil-Schneider conjecture holds when WD is indecomposable.

This <u>means</u>:

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  has a  $\overline{\mathbb{Z}}_p^{\times}$ -valued central character.

√ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ ,

provided WD is indecomposable. (Of course, only  $\parallel$  is non-trivial.)

イロト イポト イヨト イヨト

July 24, 2023

Here's my result from ten years ago (2013):

Theorem (S.)

The Breuil-Schneider conjecture holds when WD is indecomposable.

This <u>means</u>:

 $\pi_{\mathrm{alg}}(\mathrm{HT})\otimes\pi_{\mathrm{sm}}(\mathrm{WD})$  has a  $\overline{\mathbb{Z}}_p^{\times}$ -valued central character.

√ \$

 $\pi_{alg}(HT) \otimes \pi_{sm}(WD)$  admits a  $GL_n(K)$ -invariant norm  $\|\cdot\|$ ,

provided WD is indecomposable. (Of course, only  $\Downarrow$  is non-trivial.)

- The supercuspidal case was known (easy). The Steinberg case was new.

イロト イポト イヨト イヨト

#### A generalization

I proved a more general version for *any* connected reductive  $G/\mathbb{Q}_p$ .

- $\xi$  = irreducible algebraic representation of *G* (over  $\overline{\mathbb{Q}}_p$ )
- $\pi$  = essentially *discrete series* representation of  $G(\mathbb{Q}_p)$

Then:

Theorem (S.)

 $\xi \otimes \pi$  admits a  $G(\mathbb{Q}_p)$ -invariant norm if its central character is  $\overline{\mathbb{Z}}_p^{\times}$ -valued.

イロト イポト イヨト イヨト

July 24, 2023

#### A generalization

I proved a more general version for *any* connected reductive  $G/\mathbb{Q}_p$ .

- $\xi$  = irreducible algebraic representation of *G* (over  $\overline{\mathbb{Q}}_p$ )
- $\pi$  = essentially *discrete series* representation of  $G(\mathbb{Q}_p)$

Then:

Theorem (S.)

 $\xi \otimes \pi$  admits a  $G(\mathbb{Q}_p)$ -invariant norm if its central character is  $\overline{\mathbb{Z}}_p^{\times}$ -valued.

– We give the gist when *G* is simple and simply connected (no "if" above).

イロト イポト イヨト イヨト

July 24, 2023

#### A generalization

I proved a more general version for *any* connected reductive  $G/\mathbb{Q}_p$ .

- $\xi$  = irreducible algebraic representation of *G* (over  $\overline{\mathbb{Q}}_p$ )
- $\pi$  = essentially *discrete series* representation of  $G(\mathbb{Q}_p)$

Then:

Theorem (S.)

 $\xi \otimes \pi$  admits a  $G(\mathbb{Q}_p)$ -invariant norm if its central character is  $\overline{\mathbb{Z}}_p^{\times}$ -valued.

- We give the gist when *G* is simple and simply connected (no "if" above).
- The norms come from *automorphic forms* on a model  $\mathcal{G}/\mathbb{Q}$  such that
  - $\mathcal{G}(\mathbb{R})$  is compact,
  - $\mathcal{G}(\mathbb{Q}_p) = G(\mathbb{Q}_p).$

(Such G exist by Borel-Harder. Think of unitary groups in the GL<sub>n</sub>-case.)

・ロット (雪) ( き) ( き)

- 2

18/25

July 24, 2023

Automorphic forms on  $\mathcal{G}$ ,

$$A(\mathcal{G}) = \{ \text{smooth functions} \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text{compact}} \xrightarrow{f} \mathbb{C} \}.$$

Pick an  $\iota : \mathbb{C} \longrightarrow \overline{\mathbb{Q}}_p$  and identify  $\xi$  with a rep of  $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$ . Call it  $\xi_{\mathbb{C}}$ .

ヘロト ヘロト ヘヨト ヘヨト

Automorphic forms on  $\mathcal{G}$ ,

$$A(\mathcal{G}) = \{ \text{smooth functions} \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text{compact}} \xrightarrow{f} \mathbb{C} \}.$$

Pick an  $\iota : \mathbb{C} \longrightarrow \overline{\mathbb{Q}}_p$  and identify  $\xi$  with a rep of  $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$ . Call it  $\xi_{\mathbb{C}}$ . – Consider the multiplicity space

$$\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}(\xi_{\mathbb{C}}, A(\mathcal{G})) == \bigoplus_{\Pi: \Pi_{\infty} \simeq \xi_{\mathbb{C}}} m(\Pi) \Pi_{\operatorname{fin}}$$

 $(\Pi = \Pi_{\infty} \otimes \Pi_{\text{fin}} \text{ runs over the$ *automorphic representations* $of <math>\mathcal{G}(\mathbb{A})$  of weight  $\xi_{\mathbb{C}}$ .)

イロト イロト イヨト イヨト

July 24, 2023

Automorphic forms on  $\mathcal{G}$ ,

$$A(\mathcal{G}) = \{ \text{smooth functions} \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text{compact}} \xrightarrow{f} \mathbb{C} \}.$$

Pick an  $\iota : \mathbb{C} \longrightarrow \overline{\mathbb{Q}}_p$  and identify  $\xi$  with a rep of  $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$ . Call it  $\xi_{\mathbb{C}}$ . – Consider the multiplicity space

$$\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}(\xi_{\mathbb{C}}, A(\mathcal{G})) == \bigoplus_{\Pi: \Pi_{\infty} \simeq \xi_{\mathbb{C}}} m(\Pi) \Pi_{\operatorname{fin}}$$

 $(\Pi = \Pi_{\infty} \otimes \Pi_{\text{fin}} \text{ runs over the$ *automorphic representations* $of <math>\mathcal{G}(\mathbb{A})$  of weight  $\xi_{\mathbb{C}}$ .)

#### Exercise

As a  $\mathcal{G}(\mathbb{A}_{fin})$ -representation,

$$Hom_{\mathcal{G}(\mathbb{R})}\big(\xi_{\mathbb{C}}, A(\mathcal{G})\big) \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \xrightarrow{\sim} \{F: \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}_{fin}) \longrightarrow \xi^{\vee}\}^{sm}$$

where  $(gF)(x) := g_p \cdot F(xg)$  for  $g \in \mathcal{G}(\mathbb{A}_{fin})$ .

イロト イヨト イヨト イ

July 24, 2023

$$\begin{split} \xi \otimes \left( \Pi_{\mathrm{fin}} \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) &\hookrightarrow \xi \otimes \left( \mathrm{Hom}_{\mathcal{G}(\mathbb{R})} \big( \xi_{\mathbb{C}}, A(\mathcal{G}) \big) \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) \\ &\hookrightarrow \{ \mathrm{continuous} \ \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}_{\mathrm{fin}}) \xrightarrow{\varphi} \overline{\mathbb{Q}}_p \}. \end{split}$$

イロト イロト イヨト イヨト

July 24, 2023

$$\begin{split} \xi \otimes \left( \Pi_{\mathrm{fin}} \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) &\hookrightarrow \xi \otimes \left( \mathrm{Hom}_{\mathcal{G}(\mathbb{R})} \big( \xi_{\mathbb{C}}, A(\mathcal{G}) \big) \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) \\ &\hookrightarrow \{ \mathrm{continuous} \ \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}_{\mathrm{fin}}) \xrightarrow{\varphi} \overline{\mathbb{Q}}_p \}. \end{split}$$

#### Definition

*The sup-norm*  $\|\varphi\| := \sup_{x \in \mathcal{G}(\mathbb{Q}) \setminus \mathcal{G}(\mathbb{A}_{fin})} |\varphi(x)|_{\overline{\mathbb{Q}}_p}$  *is a*  $\mathcal{G}(\mathbb{A}_{fin})$ *-invariant norm.* 

イロト イポト イヨト イヨト

3

20 / 25

July 24, 2023

$$\begin{split} \xi \otimes \left( \Pi_{\mathrm{fin}} \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) &\hookrightarrow \xi \otimes \left( \mathrm{Hom}_{\mathcal{G}(\mathbb{R})} \big( \xi_{\mathbb{C}}, A(\mathcal{G}) \big) \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) \\ &\hookrightarrow \{ \mathrm{continuous} \ \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}_{\mathrm{fin}}) \xrightarrow{\varphi} \overline{\mathbb{Q}}_p \}. \end{split}$$

#### Definition

*The sup-norm*  $\|\varphi\| := \sup_{x \in \mathcal{G}(\mathbb{Q}) \setminus \mathcal{G}(\mathbb{A}_{fin})} |\varphi(x)|_{\overline{\mathbb{Q}}_{p}}$  *is a*  $\mathcal{G}(\mathbb{A}_{fin})$ *-invariant norm.* 

 $\sim$  If  $\pi \simeq \prod_p \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p$ , for an automorphic  $\Pi$  of weight  $\xi_{\mathbb{C}}$  as above, then  $\xi \otimes \pi$  admits a  $G(\mathbb{Q}_p)$ -invariant norm.

イロト イポト イヨト イヨト

July 24, 2023

$$\begin{split} \xi \otimes \left( \Pi_{\mathrm{fin}} \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) &\hookrightarrow \xi \otimes \left( \mathrm{Hom}_{\mathcal{G}(\mathbb{R})} \big( \xi_{\mathbb{C}}, A(\mathcal{G}) \big) \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p \right) \\ &\hookrightarrow \{ \mathrm{continuous} \ \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A}_{\mathrm{fin}}) \xrightarrow{\varphi} \overline{\mathbb{Q}}_p \}. \end{split}$$

#### Definition

*The sup-norm*  $\|\varphi\| := \sup_{x \in \mathcal{G}(\mathbb{Q}) \setminus \mathcal{G}(\mathbb{A}_{fin})} |\varphi(x)|_{\overline{\mathbb{Q}}_p}$  *is a*  $\mathcal{G}(\mathbb{A}_{fin})$ *-invariant norm.* 

 $\rightsquigarrow$  If  $\pi \simeq \prod_p \otimes_{\mathbb{C},\iota} \overline{\mathbb{Q}}_p$ , for an automorphic  $\Pi$  of weight  $\xi_{\mathbb{C}}$  as above, then  $\xi \otimes \pi$  admits a  $G(\mathbb{Q}_p)$ -invariant norm.

The existence of  $\Pi$  follows from standard *trace formula* methods:

イロト イポト イヨト イヨト

July 24, 2023

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...) Let S be a finite set of places, and let

 $\{\pi_v\}_{v\in S}$  be any collection of <u>discrete</u> series representations of  $\mathcal{G}(\mathbb{Q}_v)$ .

*Then there exists an automorphic representation*  $\Pi$  *of*  $\mathcal{G}(\mathbb{A})$  *s.t.*  $\Pi_v \simeq \pi_v, \forall v \in S$ .

イロト イヨト イヨト イ

July 24, 2023

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...) Let S be a finite set of places, and let

 $\{\pi_v\}_{v\in S}$  be any collection of <u>discrete</u> series representations of  $\mathcal{G}(\mathbb{Q}_v)$ .

Then there exists an automorphic representation  $\Pi$  of  $\mathcal{G}(\mathbb{A})$  s.t.  $\Pi_v \simeq \pi_v, \forall v \in S$ .

– The key point is  $\pi_v$  has a *pseudo-coefficient*; a function  $f_v$  on  $\mathcal{G}(\mathbb{Q}_v)$  s.t.

$$\operatorname{tr} \sigma_v(f_v) = \begin{cases} 1 & \text{if } \sigma_v \simeq \pi_v \\ 0 & \text{if } \sigma_v \not\simeq \pi_v \text{ (and } \sigma_v \text{ is tempered).} \end{cases}$$

イロト イポト イヨト イヨ

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...) Let S be a finite set of places, and let

 $\{\pi_v\}_{v\in S}$  be any collection of <u>discrete</u> series representations of  $\mathcal{G}(\mathbb{Q}_v)$ .

Then there exists an automorphic representation  $\Pi$  of  $\mathcal{G}(\mathbb{A})$  s.t.  $\Pi_v \simeq \pi_v, \forall v \in S$ .

– The key point is  $\pi_v$  has a *pseudo-coefficient*; a function  $f_v$  on  $\mathcal{G}(\mathbb{Q}_v)$  s.t.

$$\operatorname{tr} \sigma_v(f_v) = \begin{cases} 1 & \text{if } \sigma_v \simeq \pi_v \\ 0 & \text{if } \sigma_v \not\simeq \pi_v \text{ (and } \sigma_v \text{ is tempered).} \end{cases}$$

\* **Application**. Take  $S = \{\infty, p\}$ ,  $\pi_{\infty} = \xi_{\mathbb{C}}$ ,  $\pi_p = \pi_{\mathbb{C}}$ .

イロト イ理ト イヨト イヨト

# - Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016):

### Taylor-Wiles patching $\rightsquigarrow$

a <u>candidate</u> for *p*-adic local Langlands for  $GL_n(K)$ .

ヘロト ヘロト ヘヨト ヘヨト

# - Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016):

# Taylor-Wiles patching $\rightsquigarrow$

a <u>candidate</u> for *p*-adic local Langlands for  $GL_n(K)$ .

They start with a mod *p* representation

 $\bar{\rho}: \Gamma_K \longrightarrow \operatorname{GL}_n(\overline{\mathbb{F}}_p).$ 

イロト イボト イヨト イヨト 一日

July 24, 2023

# − Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016): Taylor-Wiles patching ~>

a <u>candidate</u> for *p*-adic local Langlands for  $GL_n(K)$ .

They start with a mod *p* representation

 $\bar{\rho}: \Gamma_K \longrightarrow \operatorname{GL}_n(\overline{\mathbb{F}}_p).$ 

From modules of automorphic forms much like A(G) they construct

 $M_{\infty}$  – a module over  $R_{\infty} = R_{\bar{\rho}}^{\Box} [x_1, \dots, x_N]$  with  $GL_n(K)$ -action.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

July 24, 2023

Theorem (CEGGPS)

Assume  $p \nmid 2n$ . Let  $\rho : \Gamma_K \to GL_n(\overline{\mathbb{Q}}_p)$  be potentially crystalline of regular weight s.t.

•  $\rho$  is generic (i.e.,  $\pi_{sm}(\rho)$  is given by local Langlands);

イロト イヨト イヨト イ

July 24, 2023

Theorem (CEGGPS)

Assume  $p \nmid 2n$ . Let  $\rho : \Gamma_K \to GL_n(\overline{\mathbb{Q}}_p)$  be potentially crystalline of regular weight s.t.

- $\rho$  is generic (i.e.,  $\pi_{sm}(\rho)$  is given by local Langlands);
- *ρ* lies on an "automorphic component".

イロト イヨト イヨト イ

Theorem (CEGGPS)

Assume  $p \nmid 2n$ . Let  $\rho : \Gamma_K \to GL_n(\overline{\mathbb{Q}}_p)$  be potentially crystalline of regular weight s.t.

- $\rho$  is generic (i.e.,  $\pi_{sm}(\rho)$  is given by local Langlands);
- $\rho$  lies on an "automorphic component".

*Then*  $BS(\rho)$  *admits a*  $GL_n(K)$ *-invariant norm.* 

イロト イヨト イヨト イ

July 24, 2023

Theorem (CEGGPS)

Assume  $p \nmid 2n$ . Let  $\rho : \Gamma_K \to GL_n(\overline{\mathbb{Q}}_p)$  be potentially crystalline of regular weight s.t.

- $\rho$  is generic (i.e.,  $\pi_{sm}(\rho)$  is given by local Langlands);
- $\rho$  lies on an "automorphic component".

*Then*  $BS(\rho)$  *admits a*  $GL_n(K)$ *-invariant norm.* 

– Pyvovarov (2021) extended this result to potentially <u>semistable</u>  $\rho$  in his Ph.D.

• • • • • • • • • • • •

Theorem (CEGGPS)

Assume  $p \nmid 2n$ . Let  $\rho : \Gamma_K \to GL_n(\overline{\mathbb{Q}}_p)$  be potentially crystalline of regular weight s.t.

- $\rho$  is generic (i.e.,  $\pi_{sm}(\rho)$  is given by local Langlands);
- $\rho$  lies on an "automorphic component".

*Then*  $BS(\rho)$  *admits a*  $GL_n(K)$ *-invariant norm.* 

– Pyvovarov (2021) extended this result to potentially <u>semistable</u>  $\rho$  in his Ph.D. What's an "automorphic component"? WD( $\rho$ ) gives an inertial type  $\tau := r|_{I_K}$ .

 $\rightsquigarrow \sigma = \sigma_{sm} \otimes \sigma_{alg} = a$  locally algebraic rep of  $GL_n(\mathcal{O}_K)$  over  $\overline{\mathbb{Q}}_p$ .

イロト イポト イヨト イヨト

 $R^{\Box}_{\bar{\rho}}(\sigma)$  parametrize pot crystalline lifts of type  $\tau$  and weight  $\sigma_{alg}$ ,

ヘロト ヘロト ヘヨト ヘヨト

 $R^{\Box}_{\bar{\rho}}(\sigma)$  parametrize pot crystalline lifts of type  $\tau$  and weight  $\sigma_{alg}$ ,

and

 $R_{\infty}(\sigma)$  the quotient of  $R_{\infty}$  acting faithfully on  $M_{\infty}(\sigma^{\circ})$ .

イロト イポト イヨト イヨト

э

24 / 25

July 24, 2023

and

 $R_{\bar{\rho}}^{\Box}(\sigma)$  parametrize pot crystalline lifts of type  $\tau$  and weight  $\sigma_{alg}$ ,  $R_{\infty}(\sigma)$  the quotient of  $R_{\infty}$  acting faithfully on  $M_{\infty}(\sigma^{\circ})$ .

– By local-global compatibility "at *p*" there's a map  $R_{\bar{\rho}}^{\Box}(\sigma) \twoheadrightarrow R_{\infty}(\sigma)$ , and Spec  $R_{\infty}(\sigma)[1/p] \subseteq \operatorname{Spec} R_{\bar{\rho}}^{\Box}(\sigma)[1/p]$ 

is a union of irreducible components - the "automorphic components".

イロト イポト イヨト イヨト

- -

24 / 25

July 24, 2023

 $R_{\overline{\rho}}^{\Box}(\sigma)$  parametrize pot crystalline lifts of type  $\tau$  and weight  $\sigma_{alg}$ , and  $R_{\infty}(\sigma)$  the quotient of  $R_{\infty}$  acting faithfully on  $M_{\infty}(\sigma^{\circ})$ .

– By local-global compatibility "at *p*" there's a map  $R^{\Box}_{\bar{\rho}}(\sigma) \twoheadrightarrow R_{\infty}(\sigma)$ , and Spec  $R_{\infty}(\sigma)[1/p] \subseteq \text{Spec } R^{\Box}_{\bar{\rho}}(\sigma)[1/p]$ 

is a union of irreducible components - the "automorphic components".

\* Folklore. All components are expected to be automorphic.

July 24, 2023



### Danke schön.

Claus Sorensen (UC San Diego)

An overview of the Breuil-Schneider conjecture