An overview of the Breuil-Schneider conjecture

Claus Sorensen

UCSanDiego

July 24, 2023

Let K / \mathbb{Q}_{p} be a finite extension.

$$
\Gamma_{K}=\operatorname{Gal}(\bar{K} / K)=\text { absolute Galois group }
$$

$W_{K}=$ Weil group
\cup

$$
I_{K}=\operatorname{Gal}\left(\bar{K} / K^{\mathrm{ur}}\right)=\text { inertia group. }
$$

Let K / \mathbb{Q}_{p} be a finite extension.

$$
\Gamma_{K}=\operatorname{Gal}(\bar{K} / K)=\text { absolute Galois group }
$$

$$
\begin{gathered}
\cup \\
W_{K}=\text { Weil group } \\
\cup \\
I_{K}=\operatorname{Gal}\left(\bar{K} / K^{\mathrm{ur}}\right)=\text { inertia group. }
\end{gathered}
$$

These groups fit in the diagram

Let $\ell \neq p$ be another prime number.

Let $\ell \neq p$ be another prime number.

$$
\begin{gathered}
V=\text { a finite-dimensional vector space over } \overline{\mathbb{Q}}_{\ell} \\
\qquad n=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}}(V) .
\end{gathered}
$$

Let $\ell \neq p$ be another prime number.
$V=$ a finite-dimensional vector space over $\overline{\mathbb{Q}}_{\ell}$,

$$
n=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}}(V) .
$$

A Galois representation on V is a continuous homomorphism

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{e}}(V) .
$$

Let $\ell \neq p$ be another prime number.

$$
\begin{aligned}
& V=\text { a finite-dimensional vector space over } \overline{\mathbb{Q}}_{\ell} \\
& \qquad n=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}}(V) .
\end{aligned}
$$

A Galois representation on V is a continuous homomorphism

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V) .
$$

- Choosing a basis for V lets us identify the target with $\mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)$.

Let $\ell \neq p$ be another prime number.

$$
\begin{aligned}
& V=\text { a finite-dimensional vector space over } \overline{\mathbb{Q}}_{\ell} \\
& \qquad n=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}}(V) .
\end{aligned}
$$

A Galois representation on V is a continuous homomorphism

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V) .
$$

- Choosing a basis for V lets us identify the target with $\mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)$.
\star Example. The cyclotomic character $\chi_{\text {cyc }}: \Gamma_{K} \longrightarrow \mathbb{Q}_{\ell}^{\times}$.

Let $\ell \neq p$ be another prime number.

$$
\begin{aligned}
& V=\text { a finite-dimensional vector space over } \overline{\mathbb{Q}}_{\ell} \\
& \qquad n=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}}(V) .
\end{aligned}
$$

A Galois representation on V is a continuous homomorphism

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{e}}(V) .
$$

- Choosing a basis for V lets us identify the target with $\mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)$.
\star Example. The cyclotomic character $\chi_{\text {cyc }}: \Gamma_{K} \longrightarrow \mathbb{Q}_{\ell}^{\times}$.
\star Example. A / K an abelian variety, $g=\operatorname{dim}(A)$. The Tate module

$$
T_{\ell} A=\varliminf_{r} A\left[\ell^{r}\right]
$$

carries a Γ_{K}-action. Gives a $2 g$-dimensional representation $V_{\ell} A=\mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}} T_{\ell} A$.
\star Example. X / K a smooth proper variety; Γ_{K} acts on ℓ-adic cohomology

$$
H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)=\mathbb{Q} \ell \otimes_{\mathbb{Z}_{\ell}}{\underset{r}{r}}_{\lim _{r}} H_{\mathrm{et}}^{i}\left(X_{\bar{K}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right)
$$

\star Example. X / K a smooth proper variety; Γ_{K} acts on ℓ-adic cohomology

$$
H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}}{\underset{r}{r}}_{\lim _{r}} H_{\mathrm{et}}^{i}\left(X_{\bar{K}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) .
$$

In the previous example $X=A$,

$$
H^{i}\left(A_{\bar{K}}, \mathbb{Q}_{\ell}\right) \simeq \bigwedge^{i}\left(V_{\ell} A\right)^{\vee} .
$$

\star Example. X / K a smooth proper variety; Γ_{K} acts on ℓ-adic cohomology

$$
H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell} \otimes_{\mathbb{Z}_{\ell}}{\underset{r}{r}}_{\lim _{r}} H_{\mathrm{et}}^{i}\left(X_{\bar{K}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) .
$$

In the previous example $X=A$,

$$
H^{i}\left(A_{\bar{K}}, \mathbb{Q}_{\ell}\right) \simeq \bigwedge^{i}\left(V_{\ell} A\right)^{\vee} .
$$

- For any Galois representation ρ as above,

$$
\rho \rightsquigarrow \pi_{\mathrm{sm}}(\rho)=\text { a smooth representation of } \mathrm{GL}_{n}(K) \text {. }
$$

This is essentially the local Langlands correspondence.

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N)

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N) - which means:
- $r: W_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a homomorphism with open kernel;

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N) - which means:
- $r: W_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a homomorphism with open kernel;
- $N \in \operatorname{End}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a (necessarily nilpotent) linear operator such that

$$
r(w) \circ N \circ r(w)^{-1}=|w| N .
$$

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N) - which means:
- $r: W_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a homomorphism with open kernel;
- $N \in \operatorname{End}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a (necessarily nilpotent) linear operator such that

$$
r(w) \circ N \circ r(w)^{-1}=|w| N .
$$

The topology of $\overline{\mathbb{Q}}_{\ell}$ is irrelevant! May identify $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$ as fields.

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N) - which means:
- $r: W_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a homomorphism with open kernel;
- $N \in \operatorname{End}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a (necessarily nilpotent) linear operator such that

$$
r(w) \circ N \circ r(w)^{-1}=|w| N
$$

The topology of $\overline{\mathbb{Q}}_{\ell}$ is irrelevant! May identify $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$ as fields.
\star Recipe. $\quad \rho\left(\phi^{s} \sigma\right)=r\left(\phi^{s} \sigma\right) \exp \left(t_{\ell}(\sigma) N\right), \quad s \in \mathbb{Z}, \quad \sigma \in I_{K}$.

There is an intermediate step,

$$
\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho) .
$$

- Here $\mathrm{WD}(\rho)$ is a Weil-Deligne representation (r, N) - which means:
- $r: W_{K} \longrightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V)$ is a homomorphism with open kernel;
- $N \in \operatorname{End}_{\overline{\mathbb{Q}}_{\ell}}(V)$ is a (necessarily nilpotent) linear operator such that

$$
r(w) \circ N \circ r(w)^{-1}=|w| N
$$

The topology of $\overline{\mathbb{Q}}_{\ell}$ is irrelevant! May identify $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\sim} \mathbb{C}$ as fields.
\star Recipe. $\quad \rho\left(\phi^{s} \sigma\right)=r\left(\phi^{s} \sigma\right) \exp \left(t_{\ell}(\sigma) N\right), \quad s \in \mathbb{Z}, \quad \sigma \in I_{K}$.
(Here $\phi \in W_{K}$ is a lift of Frobenius, and $t_{\ell}: I_{K} \rightarrow \mathbb{Z}_{\ell}$.)

- When (r, N) comes from ρ, all eigenvalues of $r(\phi)$ are ℓ-adic units.
- When (r, N) comes from ρ, all eigenvalues of $r(\phi)$ are ℓ-adic units.
$\Longrightarrow \pi_{\mathrm{sm}}(\rho)$ has a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{\ell}$-lattice Λ.
- When (r, N) comes from ρ, all eigenvalues of $r(\phi)$ are ℓ-adic units.
$\Longrightarrow \pi_{\mathrm{sm}}(\rho)$ has a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{\ell}$-lattice Λ.
(Λ is free over $\overline{\mathbb{Z}}_{\ell}$, and $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{\text {sm }}(\rho)$. Any two are commensurable.)
- When (r, N) comes from ρ, all eigenvalues of $r(\phi)$ are ℓ-adic units.
$\Longrightarrow \pi_{\mathrm{sm}}(\rho)$ has a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{\ell}$-lattice Λ.
(Λ is free over $\overline{\mathbb{Z}}_{\ell}$, and $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{\text {sm }}(\rho)$. Any two are commensurable.)
The choice of Λ gives a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$ on $\pi_{\text {sm }}(\rho)$,

$$
\|x\|:=\inf \{|c|: x \in c \Lambda\} .
$$

(The "gauge" of Λ.)

- When (r, N) comes from ρ, all eigenvalues of $r(\phi)$ are ℓ-adic units.
$\Longrightarrow \pi_{\mathrm{sm}}(\rho)$ has a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{\ell}$-lattice Λ.
(Λ is free over $\overline{\mathbb{Z}}_{\ell}$, and $\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{Z}}_{\ell}} \Lambda \xrightarrow{\sim} \pi_{\text {sm }}(\rho)$. Any two are commensurable.)
The choice of Λ gives a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$ on $\pi_{\text {sm }}(\rho)$,

$$
\|x\|:=\inf \{|c|: x \in c \Lambda\} .
$$

(The "gauge" of Λ.)
\star Breuil-Schneider. What's the story for $\ell=p$?

From now on $\ell=p$.

From now on $\ell=p$.
Start with a potentially semistable (and regular) Galois representation

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{p}}(V) .
$$

The most important examples are $\rho \subset H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)$ for some variety X / K.

From now on $\ell=p$.
Start with a potentially semistable (and regular) Galois representation

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{p}}(V) .
$$

The most important examples are $\rho \subset H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)$ for some variety X / K.

- This time we will associate two representations:
- $\rho \rightsquigarrow \pi_{\mathrm{sm}}(\rho)=$ a smooth representation of $\mathrm{GL}_{n}(K)$.

From now on $\ell=p$.
Start with a potentially semistable (and regular) Galois representation

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{p}}(V) .
$$

The most important examples are $\rho \subset H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)$ for some variety X / K.

- This time we will associate two representations:
- $\rho \rightsquigarrow \pi_{\mathrm{sm}}(\rho)=$ a smooth representation of $\mathrm{GL}_{n}(K)$.
- $\rho \rightsquigarrow \pi_{\mathrm{alg}}(\rho)=$ an algebraic representation of $\mathrm{GL}_{n}(K)$.

From now on $\ell=p$.
Start with a potentially semistable (and regular) Galois representation

$$
\rho: \Gamma_{K} \longrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}_{p}}(V) .
$$

The most important examples are $\rho \subset H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)$ for some variety X / K.

- This time we will associate two representations:
- $\rho \rightsquigarrow \pi_{\mathrm{sm}}(\rho)=$ a smooth representation of $\mathrm{GL}_{n}(K)$.
- $\rho \rightsquigarrow \pi_{\mathrm{alg}}(\rho)=$ an algebraic representation of $\mathrm{GL}_{n}(K)$.

Then, we combine them into a locally algebraic representation:

$$
\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)
$$

(A $\overline{\mathbb{Q}}_{p}$-vector space, with $\mathrm{GL}_{n}(K)$ acting diagonally.)

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

- in general they are not all commensurable; even for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

- in general they are not all commensurable; even for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.
\star Motivation. For a two-dimensional crystalline representation ρ of $\Gamma_{\mathbb{Q}_{p}}$,

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

- in general they are not all commensurable; even for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.
\star Motivation. For a two-dimensional crystalline representation ρ of $\Gamma_{\mathbb{Q}_{p}}$,
- Such lattices exist, and any two of them are commensurable;

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

- in general they are not all commensurable; even for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.
\star Motivation. For a two-dimensional crystalline representation ρ of $\Gamma_{\mathbb{Q}_{p}}$,
- Such lattices exist, and any two of them are commensurable;
- The completion $\widehat{\mathrm{BS}}(\rho)$ is the p-adic local Langlands correspondence.

Here's the (open part of the) Breuil-Schneider conjecture (2007):
Conjecture (Breuil-Schneider)
There exists a $G L_{n}(K)$-invariant norm $\|\cdot\|$ on $B S(\rho)$.

Equivalently, $\mathrm{BS}(\rho)$ should have a $\mathrm{GL}_{n}(K)$-stable $\overline{\mathbb{Z}}_{p}$-lattice.

- in general they are not all commensurable; even for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.
\star Motivation. For a two-dimensional crystalline representation ρ of $\Gamma_{\mathbb{Q}_{p}}$,
- Such lattices exist, and any two of them are commensurable;
- The completion $\widehat{\mathrm{BS}}(\rho)$ is the p-adic local Langlands correspondence.
+ local-global compatibility \rightsquigarrow Fontaine-Mazur conjecture (for odd ρ).

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\mathrm{alg}}(\rho)$.

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\text {alg }}(\rho)$.
$\mathrm{WD}(\rho)$ and $\mathrm{HT}(\rho)$ come from p-adic Hodge theory.

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\mathrm{alg}}(\rho)$.
$\mathrm{WD}(\rho)$ and $\mathrm{HT}(\rho)$ come from p-adic Hodge theory.
- A quick sketch:

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\text {alg }}(\rho)$.
$\mathrm{WD}(\rho)$ and $\mathrm{HT}(\rho)$ come from p-adic Hodge theory.
- A quick sketch:

For simplicity assume $K=\mathbb{Q}_{p}$, and ρ is semistable.

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\mathrm{alg}}(\rho)$.
$\mathrm{WD}(\rho)$ and $\mathrm{HT}(\rho)$ come from p-adic Hodge theory.
- A quick sketch:

For simplicity assume $K=\mathbb{Q}_{p}$, and ρ is semistable.
Fontaine, $\rho \rightsquigarrow D=D_{\text {st }}(\rho)=\left(B_{\mathrm{st}} \otimes_{\mathbb{Q}_{p}} V\right)^{\Gamma_{k}}$.

The formation of $\mathrm{BS}(\rho)=\pi_{\mathrm{alg}}(\rho) \otimes \pi_{\mathrm{sm}}(\rho)$ has intermediate steps:

- $\rho \rightsquigarrow \mathrm{WD}(\rho) \rightsquigarrow \pi_{\mathrm{sm}}(\rho)$,
- $\rho \rightsquigarrow \mathrm{HT}(\rho) \rightsquigarrow \pi_{\mathrm{alg}}(\rho)$.
$\mathrm{WD}(\rho)$ and $\mathrm{HT}(\rho)$ come from p-adic Hodge theory.
- A quick sketch:

For simplicity assume $K=\mathbb{Q}_{p}$, and ρ is semistable.
Fontaine, $\rho \rightsquigarrow D=D_{\text {st }}(\rho)=\left(B_{\mathrm{st}} \otimes_{\mathbb{Q}_{p}} V\right)^{\Gamma_{K}}$.
This is an n-dimensional $\overline{\mathbb{Q}}_{p}$-vector space with "linear algebra data"

$$
\left(\phi, N, \text { Fil }^{i} D\right)
$$

Here,

- $\phi=$ Frobenius $\curvearrowright D$,
- $N=$ monodromy $\curvearrowright D$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ a decreasing filtration.

Here,

- $\phi=$ Frobenius $\curvearrowright D$,
- $N=$ monodromy $\curvearrowright D$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ a decreasing filtration.

They satisfy certain compatibility conditions:

- $N \phi=p \phi N$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ is admissible - which means:

Here,

- $\phi=$ Frobenius $\curvearrowright D$,
- $N=$ monodromy $\curvearrowright D$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ a decreasing filtration.

They satisfy certain compatibility conditions:

- $N \phi=p \phi N$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ is admissible - which means:
i. $t_{H}(D)=t_{N}(D)$;

Here,

- $\phi=$ Frobenius $\curvearrowright D$,
- $N=$ monodromy $\curvearrowright D$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ a decreasing filtration.

They satisfy certain compatibility conditions:

- $N \phi=p \phi N$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ is admissible - which means:
i. $t_{H}(D)=t_{N}(D)$;
ii. $t_{H}\left(D^{\prime}\right) \leq t_{\mathrm{N}}\left(D^{\prime}\right)$ for all (ϕ, N)-submodules $D^{\prime} \subseteq D$.

Here,

- $\phi=$ Frobenius $\curvearrowright D$,
- $N=$ monodromy $\curvearrowright D$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ a decreasing filtration.

They satisfy certain compatibility conditions:

- $N \phi=p \phi N$,
- $\left\{\text { Fil }^{i} D\right\}_{i \in \mathbb{Z}}$ is admissible - which means:
i. $t_{H}(D)=t_{N}(D)$;
ii. $t_{H}\left(D^{\prime}\right) \leq t_{N}\left(D^{\prime}\right)$ for all (ϕ, N)-submodules $D^{\prime} \subseteq D$.
(Here t_{N} depends only on ϕ, whereas t_{H} depends only on the filtration.)
$\operatorname{HT}(\rho)=\left\{i_{1}, \ldots, i_{n}\right\}$ are the jumps of the filtration (in increasing order).
$\mathrm{HT}(\rho)=\left\{i_{1}, \ldots, i_{n}\right\}$ are the jumps of the filtration (in increasing order).
Saying ρ is regular means they are distinct - in other words

$$
\operatorname{dim}_{\overline{\mathbb{Q}}_{p}} \operatorname{Fil}^{i} D / \operatorname{Fil}^{i+1} D=1, \quad \forall i \in \operatorname{HT}(\rho)
$$

$\mathrm{HT}(\rho)=\left\{i_{1}, \ldots, i_{n}\right\}$ are the jumps of the filtration (in increasing order).
Saying ρ is regular means they are distinct - in other words

$$
\operatorname{dim}_{\overline{\mathbb{Q}}_{p}} \operatorname{Fil}^{i} D / \operatorname{Fil}^{i+1} D=1, \quad \forall i \in \operatorname{HT}(\rho) .
$$

The Hodge-Tate weights give a tuple

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right):=-\left(i_{n}, i_{n-1}, \ldots, i_{1}\right)-(0,1, \ldots, n-1) .
$$

This is a dominant weight for GL_{n}. (I.e., $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.)
$\mathrm{HT}(\rho)=\left\{i_{1}, \ldots, i_{n}\right\}$ are the jumps of the filtration (in increasing order).
Saying ρ is regular means they are distinct - in other words

$$
\operatorname{dim}_{\overline{\mathbb{Q}}_{p}} \operatorname{Fil}^{i} D / \operatorname{Fil}^{i+1} D=1, \quad \forall i \in \operatorname{HT}(\rho)
$$

The Hodge-Tate weights give a tuple

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right):=-\left(i_{n}, i_{n-1}, \ldots, i_{1}\right)-(0,1, \ldots, n-1) .
$$

This is a dominant weight for GL_{n}. (I.e., $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.)

$$
\pi_{\text {alg }}(\rho)=\text { irreducible algebraic rep of } \mathrm{GL}_{n} \text { with highest weight a. }
$$

$\mathrm{WD}(\rho)=(r, N)$ is a Weil-Deligne representation on D,

- $r(w)=\phi^{-d(w)}$ where $d: W_{K} \rightarrow \mathbb{Z}$,
- $N=$ monodromy $\curvearrowright D$.
(When ρ is semistable, $\operatorname{ker}(r)=I_{K}$. When ρ is crystalline, $N=0$.)
$\mathrm{WD}(\rho)=(r, N)$ is a Weil-Deligne representation on D,
- $r(w)=\phi^{-d(w)}$ where $d: W_{K} \rightarrow \mathbb{Z}$,
- $N=$ monodromy $\curvearrowright D$.
(When ρ is semistable, $\operatorname{ker}(r)=I_{K}$. When ρ is crystalline, $N=0$.)
- The Frobenius-semisimplification $\mathrm{WD}(\rho)^{F-\mathrm{ss}}=\left(r^{\mathrm{ss}}, N\right)$ gives $\pi_{\mathrm{sm}}(\rho)$ via the generic local Langlands correspondence.
$\mathrm{WD}(\rho)=(r, N)$ is a Weil-Deligne representation on D,
- $r(w)=\phi^{-d(w)}$ where $d: W_{K} \rightarrow \mathbb{Z}$,
- $N=$ monodromy $\curvearrowright D$.
(When ρ is semistable, $\operatorname{ker}(r)=I_{K}$. When ρ is crystalline, $N=0$.)
- The Frobenius-semisimplification $\mathrm{WD}(\rho)^{F-\mathrm{ss}}=\left(r^{\mathrm{ss}}, N\right)$ gives $\pi_{\mathrm{sm}}(\rho)$ via
the generic local Langlands correspondence.
What's the generic correspondence?
$\mathrm{WD}(\rho)=(r, N)$ is a Weil-Deligne representation on D,
- $r(w)=\phi^{-d(w)}$ where $d: W_{K} \rightarrow \mathbb{Z}$,
- $N=$ monodromy $\curvearrowright D$.
(When ρ is semistable, $\operatorname{ker}(r)=I_{K}$. When ρ is crystalline, $N=0$.)
- The Frobenius-semisimplification $\mathrm{WD}(\rho)^{F-\mathrm{ss}}=\left(r^{\mathrm{ss}}, N\right)$ gives $\pi_{\mathrm{sm}}(\rho)$ via

> the generic local Langlands correspondence.

What's the generic correspondence? Roughly, in the Langlands classification,

$$
\pi_{\mathrm{sm}}(\rho)=\operatorname{Ind}_{P}\left(Q\left(\Delta_{1}\right) \otimes \cdots \otimes Q\left(\Delta_{s}\right)\right) \otimes|\operatorname{det}|^{\frac{1-n}{2}}
$$

$\mathrm{WD}(\rho)=(r, N)$ is a Weil-Deligne representation on D,

- $r(w)=\phi^{-d(w)}$ where $d: W_{K} \rightarrow \mathbb{Z}$,
- $N=$ monodromy $\curvearrowright D$.
(When ρ is semistable, $\operatorname{ker}(r)=I_{K}$. When ρ is crystalline, $N=0$.)
- The Frobenius-semisimplification $\mathrm{WD}(\rho)^{F-\mathrm{ss}}=\left(r^{\mathrm{ss}}, N\right)$ gives $\pi_{\mathrm{sm}}(\rho)$ via

> the generic local Langlands correspondence.

What's the generic correspondence? Roughly, in the Langlands classification,

$$
\pi_{\mathrm{sm}}(\rho)=\operatorname{Ind}_{P}\left(Q\left(\Delta_{1}\right) \otimes \cdots \otimes Q\left(\Delta_{s}\right)\right) \otimes|\operatorname{det}|^{\frac{1-n}{2}}
$$

(a generic representation, i.e. \exists Whittaker model, but possibly reducible).

The original Breuil-Schneider conjecture had a converse:

The original Breuil-Schneider conjecture had a converse:
Keep $K=\mathbb{Q}_{p}$ for simplicity. Given $\mathrm{HT}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mathrm{WD}=(r, N)$.

The original Breuil-Schneider conjecture had a converse:
Keep $K=\mathbb{Q}_{p}$ for simplicity. Given $\mathrm{HT}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mathrm{WD}=(r, N)$.
As above, form the locally algebraic representation $\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$.

The original Breuil-Schneider conjecture had a converse:
Keep $K=\mathbb{Q}_{p}$ for simplicity. Given $\mathrm{HT}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mathrm{WD}=(r, N)$.
As above, form the locally algebraic representation $\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$.
Originally, Breuil and Schneider speculated that
HT and WD arises from a ρ as above

$$
? \Uparrow
$$

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$.

The original Breuil-Schneider conjecture had a converse:
Keep $K=\mathbb{Q}_{p}$ for simplicity. Given $\mathrm{HT}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mathrm{WD}=(r, N)$.
As above, form the locally algebraic representation $\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$.
Originally, Breuil and Schneider speculated that
HT and WD arises from a ρ as above

$$
\begin{gathered}
? \Uparrow \\
\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD}) \text { admits a } \mathrm{GL}_{n}(K) \text {-invariant norm }\|\cdot\| \text {. }
\end{gathered}
$$

Here's Yongquan Hu's theorem (2009):
Theorem (Hu)
The implication \Uparrow holds.

The original Breuil-Schneider conjecture had a converse:
Keep $K=\mathbb{Q}_{p}$ for simplicity. Given $\mathrm{HT}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mathrm{WD}=(r, N)$.
As above, form the locally algebraic representation $\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$.
Originally, Breuil and Schneider speculated that
HT and WD arises from a ρ as above

$$
\begin{gathered}
? \Uparrow \\
\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD}) \text { admits a } \mathrm{GL}_{n}(K) \text {-invariant norm }\|\cdot\| .
\end{gathered}
$$

Here's Yongquan Hu's theorem (2009):
Theorem (Hu)
The implication \Uparrow holds.

The other direction \Downarrow remains open in general.

In fact, Hu proved a stronger statement:
HT and WD arises from a ρ as above $\checkmark \Uparrow$
$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ satisfies the Emerton condition.

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$.

In fact, Hu proved a stronger statement:

HT and WD arises from a ρ as above

$$
\checkmark \mathbb{N}
$$

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ satisfies the Emerton condition.

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$.

- What's the Emerton condition?

In fact, Hu proved a stronger statement:
HT and WD arises from a ρ as above

$$
\checkmark \mathbb{I}
$$

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ satisfies the Emerton condition.
$\checkmark \Uparrow$
$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$.

- What's the Emerton condition? $W=$ locally algebraic rep of $\mathrm{GL}_{n}(K)$.

$$
W^{N_{0}, Z_{M}^{+}=\chi} \neq 0 \Longrightarrow\left|\delta_{P}(z)^{-1} \chi(z)\right| \leq 1, \forall z \in Z_{M}^{+} .
$$

($P=M N$ parabolic, $N_{0} \leq N$ compact open, Z_{M}^{+}the contracting monoid.)

In fact, Hu proved a stronger statement:
HT and WD arises from a ρ as above

$$
\checkmark \mathbb{I}
$$

$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ satisfies the Emerton condition.
$\checkmark \Uparrow$
$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$.

- What's the Emerton condition? $W=$ locally algebraic rep of $\mathrm{GL}_{n}(K)$.

$$
W^{N_{0}, Z_{M}^{+}=\chi} \neq 0 \Longrightarrow\left|\delta_{P}(z)^{-1} \chi(z)\right| \leq 1, \forall z \in Z_{M}^{+} .
$$

($P=M N$ parabolic, $N_{0} \leq N$ compact open, Z_{M}^{+}the contracting monoid.)
\rightsquigarrow a group-theoretic formulation of the admissibility of $\left\{\mathrm{Fil}^{i} D\right\}_{i \in \mathbb{Z}}$.

What's left:

- Does the Emerton condition guarantee a norm?

What's left:

- Does the Emerton condition guarantee a norm?
\star Note. For $P=G$ the Emerton condition says that

$$
W^{Z_{G}=\chi} \neq 0 \Longrightarrow|\chi(z)|=1, \forall z \in Z_{G} .
$$

I.e., the central character of W is p-adically unitary (if it has one).

What's left:

- Does the Emerton condition guarantee a norm?
\star Note. For $P=G$ the Emerton condition says that

$$
W^{Z_{G}=\chi} \neq 0 \Longrightarrow|\chi(z)|=1, \forall z \in Z_{G} .
$$

I.e., the central character of W is p-adically unitary (if it has one).

- Under favorable circumstances, this is equivalent to the Emerton condition!

What's left:

- Does the Emerton condition guarantee a norm?
\star Note. For $P=G$ the Emerton condition says that

$$
W^{Z_{G}=\chi} \neq 0 \Longrightarrow|\chi(z)|=1, \forall z \in Z_{G} .
$$

I.e., the central character of W is p-adically unitary (if it has one).

- Under favorable circumstances, this is equivalent to the Emerton condition!

This happens if

$$
\pi_{\mathrm{sm}}(\mathrm{WD})=Q(\Delta) \otimes|\operatorname{det}|^{\frac{1-n}{2}}
$$

is a generalized Steinberg representation. (\Longleftrightarrow WD is indecomposable.)

Notation:

- $n=\underbrace{m+\cdots+m}_{r} \quad P_{m}=M_{m} N_{m}$ parabolic in GL_{n},
- $\sigma=$ supercuspidal representation of $\mathrm{GL}_{m}(K)$
- $\Delta=\sigma \otimes \sigma|\cdot| \otimes \cdots \otimes \sigma|\cdot|^{r-1}$ representation of M_{m}
- $Q(\Delta)=$ the unique irreducible quotient of $\operatorname{Ind}_{P_{m}} \Delta$

Notation:

- $n=\underbrace{m+\cdots+m}_{r}, \quad P_{m}=M_{m} N_{m}$ parabolic in GL_{n},
- $\sigma=$ supercuspidal representation of $\mathrm{GL}_{m}(K)$
- $\Delta=\sigma \otimes \sigma|\cdot| \otimes \cdots \otimes \sigma|\cdot|^{r-1}$ representation of M_{m}
- $Q(\Delta)=$ the unique irreducible quotient of $\operatorname{Ind}_{P_{m}} \Delta$
\star Example. $(m=n)$ Here $Q(\Delta)$ is a supercuspidal representation of $\mathrm{GL}_{n}(K)$.

Notation:

- $n=\underbrace{m+\cdots+m}_{r} \quad P_{m}=M_{m} N_{m}$ parabolic in GL_{n},
- $\sigma=$ supercuspidal representation of $\mathrm{GL}_{m}(K)$
- $\Delta=\sigma \otimes \sigma|\cdot| \otimes \cdots \otimes \sigma|\cdot|^{r-1}$ representation of M_{m}
- $Q(\Delta)=$ the unique irreducible quotient of $\operatorname{Ind}_{p_{m}} \Delta$
\star Example. $(m=n)$ Here $Q(\Delta)$ is a supercuspidal representation of $\mathrm{GL}_{n}(K)$.
\star Example. $(m=1)$ Here $Q(\Delta)$ is a twist of the Steinberg representation;
\{smooth functions on $B \backslash G\} \rightarrow \mathrm{St}_{G}$.

Here's my result from ten years ago (2013):
Theorem (S.)
The Breuil-Schneider conjecture holds when WD is indecomposable.

Here's my result from ten years ago (2013):
Theorem (S.)
The Breuil-Schneider conjecture holds when WD is indecomposable.

This means:

$$
\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD}) \text { has a } \overline{\mathbb{Z}}_{p}^{\times} \text {-valued central character. }
$$

$\checkmark \mathbb{I}$
$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$,
provided WD is indecomposable. (Of course, only \Downarrow is non-trivial.)

Here's my result from ten years ago (2013):
Theorem (S.)
The Breuil-Schneider conjecture holds when WD is indecomposable.

This means:

$$
\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD}) \text { has a } \overline{\mathbb{Z}}_{p}^{\times} \text {-valued central character. }
$$

$\checkmark \mathbb{I}$
$\pi_{\mathrm{alg}}(\mathrm{HT}) \otimes \pi_{\mathrm{sm}}(\mathrm{WD})$ admits a $\mathrm{GL}_{n}(K)$-invariant norm $\|\cdot\|$,
provided WD is indecomposable. (Of course, only \Downarrow is non-trivial.)

- The supercuspidal case was known (easy). The Steinberg case was new.

I proved a more general version for any connected reductive G / \mathbb{Q}_{p}.

- $\xi=$ irreducible algebraic representation of G (over $\overline{\mathbb{Q}}_{p}$)
- $\pi=$ essentially discrete series representation of $G\left(\mathbb{Q}_{p}\right)$

Then:
Theorem (S.)
$\xi \otimes \pi$ admits a $G\left(\mathbb{Q}_{p}\right)$-invariant norm if its central character is $\overline{\mathbb{Z}}_{p}^{\times}$-valued.

I proved a more general version for any connected reductive G / \mathbb{Q}_{p}.

- $\xi=$ irreducible algebraic representation of G (over $\overline{\mathbb{Q}}_{p}$)
- $\pi=$ essentially discrete series representation of $G\left(\mathbb{Q}_{p}\right)$

Then:
Theorem (S.)
$\xi \otimes \pi$ admits a $G\left(\mathbb{Q}_{p}\right)$-invariant norm if its central character is $\overline{\mathbb{Z}}_{p}^{\times}$-valued.

- We give the gist when G is simple and simply connected (no "if" above).

I proved a more general version for any connected reductive G / \mathbb{Q}_{p}.

- $\xi=$ irreducible algebraic representation of G (over $\overline{\mathbb{Q}}_{p}$)
- $\pi=$ essentially discrete series representation of $G\left(\mathbb{Q}_{p}\right)$

Then:

Theorem (S.)

$\xi \otimes \pi$ admits a $G\left(\mathbb{Q}_{p}\right)$-invariant norm if its central character is $\overline{\mathbb{Z}}_{p}^{\times}$-valued.

- We give the gist when G is simple and simply connected (no "if" above).
- The norms come from automorphic forms on a model \mathcal{G} / \mathbb{Q} such that
- $\mathcal{G}(\mathbb{R})$ is compact,
- $\mathcal{G}\left(\mathbb{Q}_{p}\right)=G\left(\mathbb{Q}_{p}\right)$.
(Such \mathcal{G} exist by Borel-Harder. Think of unitary groups in the GL $_{n}$-case.)

Automorphic forms on \mathcal{G},

$$
A(\mathcal{G})=\{\text { smooth functions } \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text {compact }} \xrightarrow{f} \mathbb{C}\} .
$$

Pick an $\iota: \mathbb{C} \xrightarrow{\sim} \overline{\mathbb{Q}}_{p}$ and identify ξ with a rep of $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$. Call it $\xi_{\mathbb{C}}$.

Automorphic forms on \mathcal{G},

$$
A(\mathcal{G})=\{\text { smooth functions } \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text {compact }} \xrightarrow{f} \mathbb{C}\} .
$$

Pick an $\iota: \mathbb{C} \xrightarrow{\sim} \overline{\mathbb{Q}}_{p}$ and identify ξ with a rep of $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$. Call it $\xi_{\mathbb{C}}$. - Consider the multiplicity space

$$
\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right)=\bigoplus_{\Pi: \Pi_{\infty} \simeq \xi_{\mathrm{C}}} m(\Pi) \Pi_{\mathrm{fin}}
$$

$\left(\Pi=\Pi_{\infty} \otimes \Pi_{\text {fin }}\right.$ runs over the automorphic representations of $\mathcal{G}(\mathbb{A})$ of weight $\left.\xi_{\mathbb{C}}.\right)$

Automorphic forms on \mathcal{G},

$$
A(\mathcal{G})=\{\text { smooth functions } \underbrace{\mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}(\mathbb{A})}_{\text {compact }} \xrightarrow{f} \mathbb{C}\} \text {. }
$$

Pick an $\iota: \mathbb{C} \xrightarrow{\sim} \overline{\mathbb{Q}}_{p}$ and identify ξ with a rep of $\mathcal{G}(\mathbb{C}) \supset \mathcal{G}(\mathbb{R})$. Call it $\xi_{\mathbb{C}}$.

- Consider the multiplicity space

$$
\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right)=\bigoplus_{\Pi: \Pi_{\infty} \simeq \xi_{\mathrm{C}}} m(\Pi) \Pi_{\mathrm{fin}}
$$

$\left(\Pi=\Pi_{\infty} \otimes \Pi_{\text {fin }}\right.$ runs over the automorphic representations of $\mathcal{G}(\mathbb{A})$ of weight $\left.\xi_{\mathbb{C}}.\right)$
Exercise
As a $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-representation,

$$
\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right) \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p} \xrightarrow{\sim}\left\{F: \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{f i n}\right) \longrightarrow \xi^{\vee}\right\}^{s m},
$$

where $(g F)(x):=g_{p} \cdot F(x g)$ for $g \in \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$.

This gives $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-equivariant embeddings,

$$
\begin{aligned}
& \xi \otimes\left(\Pi_{\text {fin }} \otimes \mathbb{C}, \iota\right. \\
& \overline{\mathbb{Q}}_{p} \hookrightarrow \xi \otimes\left(\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right) \otimes \mathbb{C}, \iota\right. \\
&\left.\overline{\mathbb{Q}}_{p}\right) \\
& \hookrightarrow\left\{\operatorname{continuous} \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right) \xrightarrow{\varphi} \overline{\mathbb{Q}}_{p}\right\} .
\end{aligned}
$$

This gives $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-equivariant embeddings,

$$
\begin{aligned}
\xi \otimes\left(\Pi_{\text {fin }} \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}\right) & \hookrightarrow \xi \otimes\left(\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right) \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}\right) \\
& \hookrightarrow\left\{\text { continuous } \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right) \xrightarrow{\varphi} \overline{\mathbb{Q}}_{p}\right\} .
\end{aligned}
$$

Definition

The sup-norm $\|\varphi\|:=\sup _{x \in \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{f n}\right)}|\varphi(x)|_{\overline{\mathbb{Q}}_{p}}$ is a $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-invariant norm.

This gives $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-equivariant embeddings,

$$
\begin{aligned}
& \xi \otimes\left(\Pi_{\text {fin }} \otimes \mathbb{C}, \iota\right. \\
& \overline{\mathbb{Q}}_{p} \hookrightarrow \xi \otimes\left(\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right) \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}\right) \\
& \hookrightarrow\left\{\text { continuous } \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right) \xrightarrow{\varphi} \overline{\mathbb{Q}}_{p}\right\} .
\end{aligned}
$$

Definition
The sup-norm $\|\varphi\|:=\sup _{x \in \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)}|\varphi(x)|_{\widehat{\mathbb{Q}}_{p}}$ is a $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-invariant norm.
\rightsquigarrow If $\pi \simeq \Pi_{p} \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}$, for an automorphic Π of weight $\xi_{\mathbb{C}}$ as above, then $\xi \otimes \pi$ admits a $G\left(\mathbb{Q}_{p}\right)$-invariant norm.

This gives $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-equivariant embeddings,

$$
\begin{aligned}
\xi \otimes\left(\Pi_{\text {fin }} \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}\right) & \hookrightarrow \xi \otimes\left(\operatorname{Hom}_{\mathcal{G}(\mathbb{R})}\left(\xi_{\mathbb{C}}, A(\mathcal{G})\right) \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}\right) \\
& \hookrightarrow\left\{\text { continuous } \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right) \xrightarrow{\varphi} \overline{\mathbb{Q}}_{p}\right\} .
\end{aligned}
$$

Definition

The sup-norm $\|\varphi\|:=\sup _{x \in \mathcal{G}(\mathbb{Q}) \backslash \mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)}|\varphi(x)|_{\overline{\mathbb{Q}}_{p}}$ is a $\mathcal{G}\left(\mathbb{A}_{\text {fin }}\right)$-invariant norm.
\rightsquigarrow If $\pi \simeq \Pi_{p} \otimes_{\mathbb{C}, \iota} \overline{\mathbb{Q}}_{p}$, for an automorphic Π of weight $\xi_{\mathbb{C}}$ as above, then $\xi \otimes \pi$ admits a $G\left(\mathbb{Q}_{p}\right)$-invariant norm.

The existence of Π follows from standard trace formula methods:

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...)
Let S be a finite set of places, and let
$\left\{\pi_{v}\right\}_{v \in S}$ be any collection of discrete series representations of $\mathcal{G}\left(\mathbb{Q}_{v}\right)$.
Then there exists an automorphic representation Π of $\mathcal{G}(\mathbb{A})$ s.t. $\Pi_{v} \simeq \pi_{v}, \forall v \in S$.

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...)
Let S be a finite set of places, and let
$\left\{\pi_{v}\right\}_{v \in S}$ be any collection of discrete series representations of $\mathcal{G}\left(\mathbb{Q}_{v}\right)$.
Then there exists an automorphic representation Π of $\mathcal{G}(\mathbb{A})$ s.t. $\Pi_{v} \simeq \pi_{v}, \forall v \in S$.

- The key point is π_{v} has a pseudo-coefficient; a function f_{v} on $\mathcal{G}\left(\mathbb{Q}_{v}\right)$ s.t.

$$
\operatorname{tr} \sigma_{v}\left(f_{v}\right)= \begin{cases}1 & \text { if } \sigma_{v} \simeq \pi_{v} \\ 0 & \text { if } \sigma_{v} \nsim \pi_{v} \text { (and } \sigma_{v} \text { is tempered). }\end{cases}
$$

Theorem (Bernstein, Clozel, Deligne, Kazhdan, ...)
Let S be a finite set of places, and let
$\left\{\pi_{v}\right\}_{v \in S}$ be any collection of discrete series representations of $\mathcal{G}\left(\mathbb{Q}_{v}\right)$.
Then there exists an automorphic representation Π of $\mathcal{G}(\mathbb{A})$ s.t. $\Pi_{v} \simeq \pi_{v}, \forall v \in S$.

- The key point is π_{v} has a pseudo-coefficient; a function f_{v} on $\mathcal{G}\left(\mathbb{Q}_{v}\right)$ s.t.

$$
\operatorname{tr} \sigma_{v}\left(f_{v}\right)= \begin{cases}1 & \text { if } \sigma_{v} \simeq \pi_{v} \\ 0 & \text { if } \sigma_{v} \nsim \pi_{v} \text { (and } \sigma_{v} \text { is tempered). }\end{cases}
$$

\star Application. Take $S=\{\infty, p\}, \pi_{\infty}=\xi_{\mathbb{C}}, \pi_{p}=\pi_{\mathbb{C}}$.

- Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016):

Taylor-Wiles patching \rightsquigarrow
a candidate for p-adic local Langlands for $\mathrm{GL}_{n}(K)$.

- Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016):

Taylor-Wiles patching \rightsquigarrow a candidate for p-adic local Langlands for $\mathrm{GL}_{n}(K)$.

They start with a $\bmod p$ representation

$$
\bar{\rho}: \Gamma_{K} \longrightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right) .
$$

- Caraiani, Emerton, Gee, Geraghty, Paškūnas, and Shin (2016):

Taylor-Wiles patching \rightsquigarrow a candidate for p-adic local Langlands for $\mathrm{GL}_{n}(K)$.

They start with a $\bmod p$ representation

$$
\bar{\rho}: \Gamma_{K} \longrightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right) .
$$

From modules of automorphic forms much like $A(\mathcal{G})$ they construct
$M_{\infty}-$ a module over $R_{\infty}=R_{\bar{\rho}}^{\square} \llbracket x_{1}, \ldots, x_{N} \rrbracket$ with $\mathrm{GL}_{n}(K)$-action.

Using this construction they show:
Theorem (CEGGPS)
Assume $p \nmid 2 n$. Let $\rho: \Gamma_{K} \rightarrow G L_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be potentially crystalline of regular weight s.t.

- ρ is generic (i.e., $\pi_{s m}(\rho)$ is given by local Langlands);

Using this construction they show:
Theorem (CEGGPS)
Assume $p \nmid 2 n$. Let $\rho: \Gamma_{K} \rightarrow G L_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be potentially crystalline of regular weight s.t.

- ρ is generic (i.e., $\pi_{s m}(\rho)$ is given by local Langlands);
- ρ lies on an "automorphic component".

Using this construction they show:
Theorem (CEGGPS)
Assume $p \nmid 2 n$. Let $\rho: \Gamma_{K} \rightarrow G L_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be potentially crystalline of regular weight s.t.

- ρ is generic (i.e., $\pi_{s m}(\rho)$ is given by local Langlands);
- ρ lies on an "automorphic component".

Then BS (ρ) admits a $\mathrm{GL}_{n}(K)$-invariant norm.

Using this construction they show:
Theorem (CEGGPS)
Assume $p \nmid 2 n$. Let $\rho: \Gamma_{K} \rightarrow G L_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be potentially crystalline of regular weight s.t.

- ρ is generic (i.e., $\pi_{s m}(\rho)$ is given by local Langlands);
- ρ lies on an "automorphic component".

Then BS (ρ) admits a $\mathrm{GL}_{n}(K)$-invariant norm.

- Pyvovarov (2021) extended this result to potentially semistable ρ in his Ph.D.

Using this construction they show:
Theorem (CEGGPS)
Assume $p \nmid 2 n$. Let $\rho: \Gamma_{K} \rightarrow G L_{n}\left(\overline{\mathbb{Q}}_{p}\right)$ be potentially crystalline of regular weight s.t.

- ρ is generic (i.e., $\pi_{s m}(\rho)$ is given by local Langlands);
- ρ lies on an "automorphic component".

Then $B S(\rho)$ admits a $G L_{n}(K)$-invariant norm.

- Pyvovarov (2021) extended this result to potentially semistable ρ in his Ph.D.

What's an "automorphic component"? $\mathrm{WD}(\rho)$ gives an inertial type $\tau:=\left.r\right|_{I_{\mathcal{K}}}$.
$\rightsquigarrow \sigma=\sigma_{\mathrm{sm}} \otimes \sigma_{\mathrm{alg}}=$ a locally algebraic rep of $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$ over $\overline{\mathbb{Q}}_{p}$.

Let
$R_{\bar{\rho}}^{\square}(\sigma)$ parametrize pot crystalline lifts of type τ and weight $\sigma_{\text {alg }}$,

Let

$$
R_{\bar{\rho}}^{\square}(\sigma) \text { parametrize pot crystalline lifts of type } \tau \text { and weight } \sigma_{\mathrm{alg}},
$$ and

$R_{\infty}(\sigma)$ the quotient of R_{∞} acting faithfully on $M_{\infty}\left(\sigma^{\circ}\right)$.

Let
$R_{\bar{\rho}}^{\square}(\sigma)$ parametrize pot crystalline lifts of type τ and weight $\sigma_{\text {alg }}$, and
$R_{\infty}(\sigma)$ the quotient of R_{∞} acting faithfully on $M_{\infty}\left(\sigma^{\circ}\right)$.

- By local-global compatibility "at p " there's a map $R_{\bar{\rho}}^{\square}(\sigma) \rightarrow R_{\infty}(\sigma)$, and

$$
\operatorname{Spec} R_{\infty}(\sigma)[1 / p] \subseteq \operatorname{Spec} R_{\bar{\rho}}^{\square}(\sigma)[1 / p]
$$

is a union of irreducible components - the "automorphic components".

Let
$R_{\bar{\rho}}^{\square}(\sigma)$ parametrize pot crystalline lifts of type τ and weight $\sigma_{\text {alg }}$, and
$R_{\infty}(\sigma)$ the quotient of R_{∞} acting faithfully on $M_{\infty}\left(\sigma^{\circ}\right)$.

- By local-global compatibility "at p " there's a map $R_{\bar{\rho}}^{\square}(\sigma) \rightarrow R_{\infty}(\sigma)$, and

$$
\operatorname{Spec} R_{\infty}(\sigma)[1 / p] \subseteq \operatorname{Spec} R_{\bar{\rho}}^{\square}(\sigma)[1 / p]
$$

is a union of irreducible components - the "automorphic components".
\star Folklore. All components are expected to be automorphic.

Danke schön.

