Equivariant line bundles on the Drinfeld Tower and *p*-adic local Langlands correspondence (part 2) Integral line bundles and $\mathcal{O}(-1)$

Damien Junger

Münster Universität

August the 3rd of 2023

1/40

Notations

- Let K/\mathbb{Q}_p finite, \mathcal{O}_K , ϖ , $\mathbb{F} = \mathbb{F}_q = \mathcal{O}_K/\varpi$ and $\breve{K} = \hat{K}^{ur}$.
 - If the Drinfeld upper half-plane over K: $\mathbb{H}(\mathbb{C}_{\rho}) = \mathbb{P}^{1}(\mathbb{C}_{\rho}) \setminus \mathbb{P}^{1}(K)$,
 - (2) $\hat{\mathbb{H}}$ the canonical semi-stable model and $\overline{\mathbb{H}}$ its special fiber,
 - (3) $(\Sigma^n)_n$ the Drinfeld tower,
 - $\ \ \, {\sf S} \ \ \, {\sf G}={\sf GL}_2({\cal K}) \ {\sf and} \ \ \, {\sf G}^+\subset {\cal G}: \ g\in {\cal G} \ {\sf s.t.} \ \ v({\sf det}(g))\in 2\mathbb{Z} \ ({\sf index} \ 2),$
 - **(a)** $\mathscr{O}(k) =$ restriction to \mathbb{H} of the natural sheaf on \mathbb{P}^1 or its pullback to Σ^n .

Our goal today is to study $\operatorname{Pic}_{G^+}(\hat{\mathbb{H}})$ the group of G^+ -equivariant line bundles on $\hat{\mathbb{H}}$.

The result

Here $K = \mathbb{Q}_p$. Last time, we have completely described \mathscr{O}_{Σ^n} and $\mathscr{O}_{\Sigma^n}(-2)$ and have shown how to construct the representations $\Pi(V)^{an}$ for V de Rham of Hodge-Tate weights (0,1) of discrete series type inside the de Rham complex of the covers.

Theorem (J.)

There is a subclass $\operatorname{Pic}_{G^+}^{w=-1,\geq 0}(\hat{\mathbb{H}}) \subset \operatorname{Pic}_{G^+}(\hat{\mathbb{H}})$ of "positive line bundles of weight -1" for which the map

$$\mathcal{L}\mapsto (\mathcal{L}(\hat{\mathbb{H}})/p)^*=\overline{\mathcal{L}}(\overline{\mathbb{H}})^*$$

gives a bijection between

• $\operatorname{Pic}_{G^+}^{w=-1,\geq 0}(\hat{\mathbb{H}})/\sim (\operatorname{up} \text{ to characters trivial mod } p)$

2 supersingular mod p representations of G^+ .

One step beyond

Corollary

For any $\mathcal{L} \in \operatorname{Pic}_{G^+}^{w=-1,\geq 0}(\hat{\mathbb{H}})$, $\mathcal{L}(\hat{\mathbb{H}})[1/\rho]^*$ is an irreducible Banach space representation.

Conjecture

The map

$$\mathcal{L}\mapsto \mathsf{ind}_{G^+}^{\mathsf{G}}\,\mathcal{L}(\hat{\mathbb{H}})[1/p]^*$$

gives a bijection between

•
$$\operatorname{Pic}_{G^+}^{w=-1,\geq 0}(\hat{\mathbb{H}})/\{\mathcal{L}\sim \mathcal{L}^g:g\notin G^+\},$$

Banach space representations Π(V) for V de Rham of Hodge-Tate weights (0,0).

Historic : Generic case

- **(**) Morita and Murase : $\mathscr{O}(2k)$ on \mathbb{H} (dimension 1),
- Schneider-Stuhler (Pohlkamp) : More G-equivariant vector bundles in any dimension,
- Orlik (Orlik-Strauch, Linden in char p) : Any G-equivariant vector bundles that are restrictions from P^d.

Historic : Integral case

- **(**) Teitelbaum : G-equivariant integral structure for $\mathcal{O}(2k)$ (dimension 1),
- Grosse-Klönne : G-equivariant integral structure for 𝒪(k) with pathologies at singularities for odd k (dimension 1)
- **③** Grosse-Klönne (again) : Extension to some line bundles in higher dimension.

Philosophy

To avoid these problems, study G^+ -equivariant bundles instead of G-equivariant bundles.

Integral structures and representations

Given $\mathcal L$ on $\hat{\mathbb H}$ we get $\mathcal L[1/p]$ on $\mathbb H$ and $\overline{\mathcal L}$ on $\overline{\mathbb H}$ and also four representations

$(H^{i}(\hat{\mathbb{H}},\mathcal{L})[1/p])^{*} \ (i=0,1):$	$H^{0}(\mathbb{H},\mathcal{L}[1/p])^*$:
Banach space representation	Locally analytic representation
$(H^{i}(\hat{\mathbb{H}},\mathcal{L})/p)^{*} \ (i=0,1):$	$(H^i(\overline{\mathbb{H}},\overline{\mathcal{L}}))^* \; (i=0,1):$
Smooth mod p representation	Smooth mod p representation

Link with modular forms

- Last time : some quaternionic Shimura curves $\operatorname{Sh}_n(K_p)$ can be uniformized by \mathbb{H} i.e. can be written as $\operatorname{Sh}_n(K_p) \cong \coprod_i \Gamma_i \setminus \Sigma^n$.
- Then the sections of the push forward of $\mathcal{O}(k)$ on can be interpreted as "modular forms of weight k" on the associated Shimura curve (Shimura isomorphism).

Definition

Here we write X for \mathbb{H} , $\hat{\mathbb{H}}$ or $\overline{\mathbb{H}}$ and $H \subset G$ (most of the time G^+ or G).

Definition (*H*-equivariant line bundles)

An *H*-equivariant line bundle on *X* is a line bundle \mathcal{L} with isomorphisms $(\rho_g : g^{-1}\mathcal{L} \xrightarrow{\sim} \mathcal{L})_{g \in H}$ satisfying

$$\begin{split} \forall g \in H, \forall f \in \mathcal{O}(U), \forall v \in \mathcal{L}(U), \rho_g(fv) &= (g \cdot f)\rho_g(v) \quad \mathcal{O}[H] - \text{linear} \\ \forall g, h \in H, \rho_{gh} &= \rho_g \circ g^{-1}\rho_h. \end{split}$$

The group for the tensor product of *H*-equivariant line bundles up to strong equivalence is denoted by $Pic_H(X)$.

Examples

Here are some examples of equivariant line bundles :

- $\mathcal{O}(k)$ on \mathbb{H} for G,
- **②** For any character ψ of H, we have $\mathscr{O}(\psi)$ an action of H on \mathscr{O} given by

$$\rho_{g}(f) = \psi(g)g \cdot f,$$

③ on \mathbb{H} for G^+ : $\pi_* \mathscr{O}_{\Sigma^n}^{\rho}$ and $\pi_* (\mathscr{O}_{\Sigma^n}(k))^{\rho}$ for ρ irreducible of $D^*/(1 + \mathfrak{m}_D^n)$ → line bundles when n = 1,

• $\Omega(\log)$ on $\hat{\mathbb{H}}$ for G an integral structure for $\mathscr{O}(-2)$.

Examples coming from the modular interpretation

Fundamental result : $\hat{\mathbb{H}}$ represents a problem of deformations of formal modules \rightsquigarrow universal module \mathfrak{X} on $\hat{\mathbb{H}}$. We can define more G^+ -equivariant line bundles :

- Lie(\mathfrak{X}) admits an action of $\mathbb{Z}_{p^2}^* \subset \mathcal{O}_D^*$. Each isotypical part $\omega_i = (\text{Lie}(\mathfrak{X})_i)^* \in \text{Pic}_{\mathcal{G}^+}(\hat{\mathbb{H}})$ and $\omega_i[1/p] \cong \mathscr{O}(-1)$,
- the augmentation ideal *I* of the torsion points $\mathfrak{X}[\mathfrak{m}_D]$ admits an action of $(\mathcal{O}_D/\mathfrak{m}_D)^* \cong \mathbb{F}_{p^2}^*$ and each isotypical part

$$\mathcal{I} = \bigoplus_{\chi} \mathscr{L}_{\chi}$$

is in $\operatorname{Pic}_{G^+}(\hat{\mathbb{H}})$ and $\mathscr{L}_{\chi}[1/p] \cong \mathscr{O}_{\Sigma_1}^{\chi}$. We distinguish two of them \mathscr{L}_0 , \mathscr{L}_1 corresponding to the additve mod p characters of $\mathbb{F}_{p^2}^*$.

Classification

Definition

A G^+ -equivariant line bundle on $\hat{\mathbb{H}}$ is said to be modular if it is a tensor product of $\mathscr{O}(\psi)$, ω_0 , ω_1 , \mathscr{L}_0 , \mathscr{L}_1 . The set of modular objects will be denoted $\operatorname{Pic}_{(mod)}(\hat{\mathbb{H}})$.

The classification result (the concise version) reads as follows :

Theorem (J.)

Any G^+ -equivariant line bundle on $\hat{\mathbb{H}}$ is modular i.e. $\operatorname{Pic}_{G^+}(\hat{\mathbb{H}}) = \operatorname{Pic}_{(mod)}(\hat{\mathbb{H}})$.

Moreover the group $\mathsf{Pic}_{\mathcal{G}}(\hat{\mathbb{H}})$ is generated by the characters and by $\Omega^1(\mathsf{log})$

In particular, $\mathcal{O}(1)$ has no *G*-equivariant integral structure !

A useful exact sequence

For a general space $H \curvearrowright X$, the main tool to study $\operatorname{Pic}_H(X)$ is the following :

Propostition

We have an exact sequence :

$$0
ightarrow \mathsf{H}^1(H, \mathscr{O}(X)^*)
ightarrow \mathsf{Pic}_H(X)
ightarrow \mathsf{Pic}(X)^H
ightarrow \mathsf{H}^2(H, \mathscr{O}(X)^*)$$

Example in generic fiber

On the generic fiber $\mathbb H,$ things can be made a little bit simpler (not substantially...) by the following result

Theorem (J., ...)

 $\mathsf{Pic}(\mathbb{H}) = 0$

Corollary

 $\mathsf{Pic}_{H}(\mathbb{H})\cong\mathsf{H}^{1}(H,\mathscr{O}(\mathbb{H})^{*})$

Horschild-Serre arguments

Application on the integral level

As we have $\mathscr{O}(\hat{\mathbb{H}}) = \mathcal{O}_{\check{K}}$, $\mathsf{Pic}(\hat{\mathbb{H}})^{G^+} \cong \mathbb{Z}^2$, $\mathsf{Pic}(\hat{\mathbb{H}})^G \cong \mathbb{Z}$ (see next slides), we have obtained the following sequence

Corollary

$$\begin{array}{l} 0 \rightarrow \mathsf{hom}(G^+, \mathcal{O}_{\breve{K}}^*) \rightarrow \mathsf{Pic}_{G^+}(\hat{\mathbb{H}}) \xrightarrow{(\mathsf{ord}_{s_0}, \mathsf{ord}_{s_1})} \mathbb{Z}^2 \\ 0 \rightarrow \mathsf{hom}(G, \mathcal{O}_{\breve{K}}^*) \rightarrow \mathsf{Pic}_G(\hat{\mathbb{H}}) \xrightarrow{\mathsf{ord}_{s_1}} \mathbb{Z} \end{array}$$

Construction

Denote \mathcal{BT} the Bruhat-Tits building :

- with vertices $\mathcal{BT}_0 = GL_2(\mathcal{K})/\mathcal{K}^* GL_2(\mathcal{O}_{\mathcal{K}})$ the set of lattices of \mathcal{K}^2 up to homothetie,
- with edges the set \mathcal{BT}_1 of $(s_0, s_1) = ([M_0], [M_1]) \in \mathcal{BT}_0^2$ satisfying

 $M_0 \supsetneq M_1 \supsetneq \varpi M_0.$

Action of G^+ and G on the building

- G acts transitively on \mathcal{BT}_0 but G^+ has two orbits G^+s_0 , G^+s_1 ($s \in G^+s_i$ iff $d(s, s_i)$ is even) with stabiliser $GL_2(\mathcal{O}_K)\varpi^{\mathbb{Z}}$ up to conjugation,
- **②** G and G^+ act transitively on \mathcal{BT}_1 . with stabiliser $I\varpi^{\mathbb{Z}}$ up to conjugation (*I* for lwahori).

Description of the special fiber

- The irreducible components of the special fiber $\overline{\mathbb{H}}$ are in bijection with \mathcal{BT}_0 and are isomorphic to the projective line $(\mathbb{P}_s)_{s \in \mathcal{BT}_0}$,
- the intersections $\{(s, s') : \mathbb{P}_s \cap \mathbb{P}_{s'} \neq 0\}$ are in bijection with \mathcal{BT}_1 and the components meet transversaly on some closed points,

• for any fixed vertex s, the set $\{s' : \mathbb{P}_s \cap \mathbb{P}_{s'} \neq 0\}$ are in bijection with $\mathbb{P}_s(\mathbb{F})$. In other words, \mathcal{BT} is the nerve of the cover of $\overline{\mathbb{H}}$ by its irreducible components.

Bruhat-Tits building

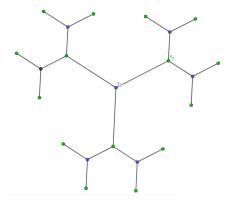


Figure: \mathcal{BT} for $SL_2(\mathbb{Q}_2)$

Components of $\overline{\mathbb{H}}$

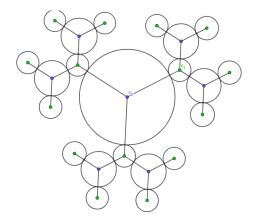


Figure: \mathcal{BT} and $\overline{\mathbb{H}}$

Theorem (J.)

$$\mathsf{Pic}(\hat{\mathbb{H}}) \xrightarrow{\sim} \mathsf{Pic}(\overline{\mathbb{H}}) \xrightarrow{\sim} \prod_{s \in \mathcal{BT}_0} \mathsf{Pic}(\mathbb{P}_s) \cong \prod_{s \in \mathcal{BT}_0} \mathbb{Z}$$

The first isomorphism is also true for most open of $\hat{\mathbb{H}}.$ To see that it globalizes, we observe

$$\mathrm{H}^{1}_{\mathrm{an}}(\mathbb{H}, 1 + \mathscr{O}^{++}) = 0.$$

Orders of modular bundles

To prove the classification result, we need to determine the image of (ord_{s_0}, ord_{s_1}) . We begin by modular bundles :

Proposition

•
$$\operatorname{ord}_{s_0}(\omega_0) = -1$$
 and $\operatorname{ord}_{s_1}(\omega_0) = q$.
• $\operatorname{ord}_{s_0}(\omega_1) = q$ and $\operatorname{ord}_{s_1}(\omega_1) = -1$.
• $\operatorname{ord}_{s_0}(\mathscr{L}_0) = 1$ and $\operatorname{ord}_{s_1}(\mathscr{L}_0) = -1$
• $\operatorname{ord}_{s_0}(\mathscr{L}_1) = -1$ and $\operatorname{ord}_{s_1}(\mathscr{L}_1) = 1$
• $\operatorname{ord}_{s_0}(\Omega^1(\log)) = \operatorname{ord}_{s_1}(\Omega^1(\log)) = q - 1$
In particular, the image of $\operatorname{Pic}_{(mod)}(\hat{\mathbb{H}})$ by $(\operatorname{ord}_{s_0}, \operatorname{ord}_{s_1})$ in \mathbb{Z}^2 is

$$\{(n,m):n+m\equiv 0\pmod{q-1}\}$$

Orders of modular bundles : Some arguments

For any non-zero map on the projective line $f: \mathscr{O}(k) \to \mathscr{O}(k')$, we have

$$k'-k=\sum_{y\in V^+(f)}\mathrm{mult}_y(f).$$

Idea : use this principle for maps from the modular problem.

This relies on making explicit these identifications coming from the representability $\overline{\mathbb{H}}(\overline{\mathbb{F}}) \xrightarrow{\sim} \{\text{Formal module over } \overline{\mathbb{F}} + ...\} \xrightarrow{\sim} \{\text{Free } \mathcal{O}_{\breve{K}}\text{-module} + \Pi, V, F \text{ operator} + ...\}.$ Need also $\overline{\mathbb{H}}(\overline{\mathbb{F}}[\varepsilon])$ (Dieudonné-Messing theory)

Last step of the argument (finally!)

Proposition

For G^+ -equivariant line bundles $\mathcal L$ on $\hat{\mathbb H}$ or $\overline{\mathbb H}$, we have :

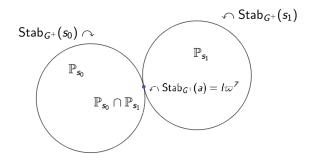
$$\operatorname{ord}_{s_0}(\mathcal{L}) + \operatorname{ord}_{s_1}(\mathcal{L}) \equiv 0 \pmod{q-1}$$

and for G-equivariant ones :

$$\operatorname{ord}_{s_0}(\mathcal{L}) \equiv \operatorname{ord}_{s_1}(\mathcal{L}) \equiv 0 \pmod{q-1}$$

In particular, the image of $\text{Pic}_{(mod)}(\hat{\mathbb{H}})$ and $\text{Pic}_{G^+}(\hat{\mathbb{H}})$ by $(\text{ord}_{s_0}, \text{ord}_{s_1})$ are the same.

The end of the proof



• ord $s_i(\mathcal{L})$ determines the action of $\operatorname{Stab}(s_i)$ on $\mathcal{L}(\mathbb{P}_{s_i})$ (up to a character) and of $\operatorname{Stab}(a)$ on $\mathcal{L}(\mathbb{P}_{s_0} \cap \mathbb{P}_{s_1})$ which should be independent of i,

Classification on the special fiber

As the above arguments work even on the special fiber, we have

Corollary

For $H = G^+$ or G, we have an exact sequence

 $0
ightarrow \mathsf{Hom}_{\mathrm{Gr}}(H, 1 + arpi \mathcal{O}_{\breve{K}})
ightarrow \mathsf{Pic}_{H}(\hat{\mathbb{H}})
ightarrow \mathsf{Pic}_{H}(\overline{\mathbb{H}})
ightarrow 0$

More on the classification on the integral level

Fix $\mathcal{L}\in\mathsf{Pic}_{{\mathcal{G}}^+}(\hat{\mathbb{H}})$ once and for all

Corollary

 $\ensuremath{\mathcal{L}}$ can be written uniquely of the form

$$\mathcal{L} = \omega_0^{-w(\mathcal{L})} \otimes \mathscr{L}_0^{t(\mathcal{L})} \otimes \psi$$

where $w(\mathcal{L}) = -\frac{1}{q-1}(\operatorname{ord}_{s_0}(\mathcal{L}) + \operatorname{ord}_{s_1}(\mathcal{L}))$ is the weight and $t(\mathcal{L})$ is the type.

Classification on the generic fiber

As we have $\omega_0[1/p] \cong \mathscr{O}(-1)$, $\mathscr{L}_0[1/p] \cong \mathscr{O}_{\Sigma_1}^{\chi_0}$, we have on the generic fiber : Corollary

$$\mathcal{L}[1/p] \cong (\mathscr{O}_{\Sigma_1}(w(\mathcal{L})))^{\chi_0^{t(\mathcal{L})}} \otimes \psi$$

Moreover, we have $\mathcal{L}_0[1/p]\cong \mathcal{L}_1[1/p]$ if and only if

$$w(\mathcal{L}_0) = w(\mathcal{L}_1) \text{ and } t(\mathcal{L}_0) \equiv t(\mathcal{L}_1) \pmod{q+1}.$$

Vanishing results

We have by studying this exact sequence

$$0 \to \mathcal{L} \xrightarrow{\times \varpi} \mathcal{L} \to \overline{\mathcal{L}} \to 0$$

Lemma

For L a G⁺-equivariant line bundle, if Hⁱ(𝔅, 𝔅) = 0 for some i = 0, 1, then
Hⁱ(𝔅, L) = 0,
H¹⁻ⁱ(𝔅, L) is O_K-flat
H¹⁻ⁱ(𝔅, 𝔅) = H¹⁻ⁱ(𝔅, 𝔅)/𝔅.

Application

As an application

Corollary

- if \mathcal{L} is positive (i.e. both orders are positive), then $H^1(\overline{\mathbb{H}}, \overline{\mathcal{L}}) = 0$,
- **(2)** if \mathcal{L} is negative (i.e. both orders are negative), then $\mathscr{L}(\overline{\mathcal{L}}) = 0$.

Cech argument

We can easily justify that we have a long exact sequence

$$egin{aligned} \mathfrak{O} & o \overline{\mathcal{L}}(\overline{\mathbb{H}}) o \prod_{s \in \mathcal{BT}_0} \overline{\mathcal{L}}(\mathbb{P}_s) o \prod_{a=(s,s') \in \mathcal{BT}_1} \overline{\mathcal{L}}(\mathbb{P}_s \cap \mathbb{P}_{s'}) \ & o \mathsf{H}^1(\overline{\mathbb{H}},\overline{\mathcal{L}}) o \prod_{s \in \mathcal{BT}_0} \mathsf{H}^1(\mathbb{P}_s,\overline{\mathcal{L}}) o \mathbf{0}. \end{aligned}$$

The different terms above can be written as an induction of characters of I or of representations $\sigma_{s,k} := \det^s \otimes \operatorname{Sym}^k \overline{\mathbb{F}}^2$.

Study of the Cech complexe

Corollary

The representation $\overline{\mathcal{L}}(\overline{\mathbb{H}})^*$ can only be irreducible when \mathcal{L} is positive of weight -1. In that case,

$$\overline{\mathcal{L}}(\overline{\mathbb{H}})^* \cong \frac{\operatorname{c-ind}_{I\varpi^{\mathbb{Z}}}^{G^+} \mu}{\operatorname{c-ind}_{G^\circ\varpi^{\mathbb{Z}}}^G \sigma_{s,k} + (\operatorname{c-ind}_{G^\circ\varpi^{\mathbb{Z}}}^G \sigma_{s+k,p-1-k})^w}$$

with $w \notin G^+$.

The case of $G^{\circ} = \operatorname{GL}_2(\mathcal{O}_K)$

Here K is totally ramified over \mathbb{Q}_p ,

Proposition

Every irreducible representations mod p of $GL_2(\mathbb{F}_p)$ and of $G^{\circ}\varpi^{\mathbb{Z}}$ (smooth) can be written uniquely of the form $(0 \le s, k \le q-1)$

$$\sigma_{s,k} = \mathsf{det}^s \otimes \mathsf{Sym}^k \,\overline{\mathbb{F}}^2$$

We would like to understand c-ind ${}^{G}_{G^{\circ}\varpi^{\mathbb{Z}}} \sigma_{s,k}$.

Hecke algebra

The Hecke algebra is
$$\mathcal{H}(\sigma_{s,k}) = \mathsf{End}_{\mathcal{G}}(\mathsf{c-ind}_{\mathcal{G}^{\circ}\varpi^{\mathbb{Z}}}^{\mathcal{G}}\sigma_{s,k})$$

Lemma

We have :

$$\mathcal{H}(\sigma_{s,k}) \cong \overline{\mathbb{F}}_p[T]$$

for a distinguished operator T.

Lemma

Every smooth irreducible representations mod p of G is a quotient of

$$\operatorname{\mathsf{c-ind}}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s,k}/(T-\lambda)$$

Representations of G

Theorem (Bartel-Livne)

Smooth irreducible representations mod p of G can be separated in four disjoint families :

- characters (k = 0 and $\lambda = \pm 1$),
- (a) the special series $\chi \otimes St = \chi \otimes (\operatorname{c-ind}_B^G \mathbb{1}_B) / \mathbb{1}_G$ $(k = p 1 \text{ and } \lambda = \pm 1)$,
- the principal series c-ind^G_B $\mu_1 \otimes \mu_2$ with $\mu_1 \neq \mu_2$ ((k, λ) $\in \{0, p-1\} \times \{\pm 1\}$ and $\lambda \neq 0$),
- supersingular representations ($\lambda = 0$).

Supersingular representations form the most mysterious family except when $\mathcal{K}=\mathbb{Q}_p$:

Theorem (Breuil)

When $K = \mathbb{Q}_p$, the following representations are irreducible

$$\operatorname{\mathsf{c-ind}}_{G^\circ \varpi^{\mathbb{Z}}}^G \sigma_{s,k}/T$$

Representations of $S = SL_2(K)$

Theorem (Abdellatif, Chen)

Smooth irreducible representations mod p of $S := SL_2(K)$ can be separated in four disjoint families :

- **(**) the trivial representation $\mathbb{1}_{S}$,
- 2 the special representation $Sp = St|_S$,
- **③** the principal series c-ind ${}^{\mathcal{G}}_{B} \mu \otimes \mathbb{1}|_{\mathcal{S}}$ with $\mu \neq \mathbb{1}$,
- supersingular representations (quotients of the restriction of the supersingular representations of G).

Theorem (Abdellatif, Chen)

When $K = \mathbb{Q}_p$, supersingular representations of G decompose as the sum of two irreducible representations of $SL_2(K)$:

$$\frac{\operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s,k}}{T}|_{S} = \frac{\operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G^{+}}\sigma_{s,k}}{T}|_{S} \oplus \frac{(\operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G^{+}}\sigma_{s,k})^{w}}{T}|_{S}$$

Relations between representations of G and G^+

Proposition

Take two smooth irreducible representations σ of ${\it G}$ and ρ of ${\it G}^+$:

- $\sigma|_{G^+}$ and $\operatorname{ind}_{G^+}^G \rho$ are either irreducible or the sum of two irreducible representations,
- **②** any irreducible representation of G or G^+ can be obtained via this process.

Representations of G^+

Corollary

Smooth irreducible representations mod p of G^+ can be separated in four disjoint families :

- characters,
- 2 the special series $\chi \otimes \operatorname{St}|_{\mathcal{G}^+}$,
- **③** the principal series c-ind^G_B $\mu_1 \otimes \mu_2|_{G^+}$ with $\mu_1 \neq \mu_2$,
- supersingular representations (direct summand of the restriction of supersingular representations of G).

Corollary

When $K = \mathbb{Q}_p$, supersingular representations of G decompose :

$$\frac{\operatorname{\mathsf{c-ind}}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s,k}}{T}|_{G^{+}} = \frac{\operatorname{\mathsf{c-ind}}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G^{+}}\sigma_{s,k}}{T} \oplus \frac{(\operatorname{\mathsf{c-ind}}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G^{+}}\sigma_{s,k})^{w}}{T}$$

Interesting consequences

Here $K = \mathbb{Q}_p$:

Corollary

The restriction to $SL_2(\mathbb{Q}_p)$ induces a bijective map

$$\mathrm{Irr}_{\mathcal{G}^+}(\overline{\mathbb{F}}_p)/\{\mathit{characters}\} \stackrel{\sim}{
ightarrow} \mathrm{Irr}_{\mathsf{SL}_2(\mathbb{Q}_p)}(\overline{\mathbb{F}}).$$

Corollary

A *G*-representation is supersingular if and only if it is the induction of an irreducible representation of G^+ if and only if its restriction to G^+ decomposes.

Other description of supersingular representations

Theorem (Anandavardhanan-Borisagar)

We have

$$\frac{\operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s,k}}{T} \cong \frac{\operatorname{c-ind}_{I\varpi^{\mathbb{Z}}}^{G}\mu}{\operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s,k} + \operatorname{c-ind}_{G^{\circ}\varpi^{\mathbb{Z}}}^{G}\sigma_{s+k,p-1-k}}$$

This isomorphism is compatible with the previous decomposition on G^+ which proves the main result.