Equivariant line bundles on the Drinfeld Tower and *p*-adic local Langlands correspondence (part 1) The sheaf of differential forms (by Dospinescu-Le Bras)

Damien Junger

Münster Universität

August the 1st of 2023

1/33

Poincaré and Drinfeld half-plane

On \mathbb{C} , we have $\mathcal{H} = \{z \in \mathbb{C} \, | \, \mathrm{Im}(z) > 0\} = (\mathbb{P}^1(\mathbb{C}) \backslash \mathbb{P}^1(\mathbb{R}))^+$

Similarly, over \mathbb{C}_p , we have a Stein rigid open of \mathbb{P}^1 :

 $\mathbb{H}(\mathbb{C}_{\rho}) = \mathbb{P}^1(\mathbb{C}_{\rho}) ackslash \mathbb{P}^1(K)$

with K/\mathbb{Q}_p finite

The upper half-plane

Uniformization

 $GL_2(\mathbb{Z}) \curvearrowright \mathcal{H}$ by homographies and for any torsionfree congruence subgroup $\Gamma \subset GL_2(\mathbb{Z})$, consider the Riemann surface $Y_{\Gamma} = \Gamma \setminus \mathcal{H}$.

If $\Gamma = \Gamma(M) = \ker(\operatorname{GL}_2(\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/M\mathbb{Z}))$, write $Y(M) = Y_{\Gamma}$ \rightsquigarrow tower of covers $\{Y(p^n)\}_{n\geq 3}$ with p a prime number.

Mumford curves : $\Gamma \setminus \mathbb{H}$ with discrete cocompact $\Gamma \subset GL_2(K)$.

Simple connectedness

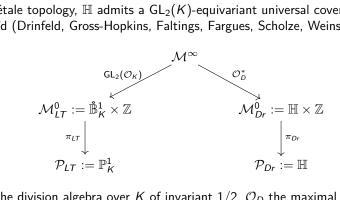
Theorem (Van Der Put)

The spaces $\mathbb H$ are simply connected for the analytic topology. Moreover, one has for any constant sheaf A

 $\mathrm{H}^{q}_{\mathrm{an}}(\mathbb{H},A)=0 \ \mathrm{if} \ q\geq 1$

"Universal" cover

For the étale topology, \mathbb{H} admits a $GL_2(K)$ -equivariant universal cover which is perfectoïd (Drinfeld, Gross-Hopkins, Faltings, Fargues, Scholze, Weinstein)



with D the division algebra over K of invariant 1/2, \mathcal{O}_D the maximal order.

The towers of covers

Let's build two towers of covers $(\mathcal{M}_{LT}^n)_n$, $(\mathcal{M}_{Dr}^n)_n$ with these definitions :

$$\mathcal{M}_{Dr}^{n} := \mathcal{M}^{\infty}/(1 + \mathfrak{m}_{D}^{n}) := \Sigma^{n} \times \mathbb{Z}$$
$$\mathcal{M}_{LT}^{n} := \mathcal{M}^{\infty}/(1 + \mathsf{M}_{2}(\mathfrak{m}_{K}^{n})) := \mathsf{LT}^{n} \times \mathbb{Z}$$

Geometric realizations

Each cover LT^{*n*} admits an action of $GL_2(\mathcal{O}_K) \times D^* \times W_K$ and $GL_2(K) \times D^* \times W_K$ for Σ^n .

Theorem (Drinfeld, Carayol, Harris-Taylor, Faltings ...)

 $\varinjlim_{l \in I} \mathrm{H}^*_{\mathrm{\acute{e}t},c}(\mathsf{LT}^n, \overline{\mathbb{Q}}_l)_{cusp} \text{ and } \varinjlim_{n} \mathrm{H}^*_{\mathrm{\acute{e}t},c}(\Sigma^n, \overline{\mathbb{Q}}_l)_{cusp} \ (l \neq p) \text{ provides geometric realizations of local Langlands and Jacquet-Langlands' correspondences.}$

I-adic cohomology

Realizations : The statement

Theorem

Let π be a supercuspidal representation of G, with $\rho := JL(\pi)$ factoring through $D^*/(1 + \mathfrak{m}_D^n)$:

$$\mathrm{H}^{i}_{\mathrm{\acute{e}t},c}(\Sigma^{n},\overline{\mathbb{Q}}_{I})^{
ho}\cong_{G imes W_{K}} egin{cases} \pi\otimes\mathrm{LL}(\pi) & \mathrm{If}\ i=1\ 0 & \mathrm{If}\ \mathrm{not} \end{cases}$$

with $\mathrm{H}^{i}_{\mathrm{\acute{e}t},c}(\Sigma^{n},\overline{\mathbb{Q}}_{l})^{\rho} := \mathrm{Hom}(\rho,\mathrm{H}^{i}_{\mathrm{\acute{e}t},c}(\Sigma^{n},\overline{\mathbb{Q}}_{l})).$

Classification of smooth irreducible G-representations

Set $C \cong \widehat{\mathbb{Q}}_l$, we will study smooth irreducible $G = GL_2(\mathbb{Q}_p)$ -representations (π, V) (Stab(v) is open in G for any $v \in V$).

They can be distinguished into four families :

- smooth characters of G,
- 2 the special series $\chi \otimes St = \chi \otimes (Ind_B^G \mathbb{1}_B)/\mathbb{1}_G$,
- **③** the principal series $\operatorname{Ind}_{B}^{G} \mu_{1} \otimes \mu_{2}$ with $\mu_{1}/\mu_{2} \neq |\cdot|^{\pm 1}$,
- supercuspidal representations.

Classical correspondences

Theorem (Classical local Jacquet-Langlands' and Langlands' correspondences

There exists a natural bijection $\pi \mapsto LL(\pi)$ between isomorphism classes

- Supercuspidal representations of G on C,
- **2** Irreducible 2-dimensionnal representations of W_K on C.

There exists a natural bijection $\pi \mapsto JL(\pi)$ between isomorphism classes

- Supercuspidal representations of G on C,
- **②** Smooth irreducible representations of dimension > 1 of D^* on C.

We will fix once and for all π a supercuspidal representation of G, with $\rho := JL(\pi)$ factoring through $D^*/(1 + \mathfrak{m}_D^n)$

Motivation

Conjecture

 $\varinjlim_{n} \mathrm{H}^*_{\mathrm{dR},c}(\mathsf{LT}^n)_{\textit{cusp}} \text{ and } \varinjlim_{n} \mathrm{H}^*_{\mathrm{dR},c}(\Sigma^n)_{\textit{cusp}} \text{ also provides geometric realizations of local Langlands and Jacquet-Langlands' correspondences.}$

Correspondence for De Rham cohomology

Theorem (Dospinescu-Le Bras)

$$\mathrm{H}^{1}_{\mathrm{dR},c}(\Sigma^{n})^{\rho}\cong_{G} \pi\otimes M_{Dr}(\pi)$$

with dim_L $M_{Dr}(\pi) = 2$.

- Drinfeld and Lubin-Tate side when *d* = 1, for any *K* : Colmez-Dospinescu-Niziol
- Drinfeld side when n = d = 1, K = Q_p: Breuil-Strauch, Lue Pan (+ semi-stable model)
- Drinfeld and Lubin-Tate side when n = 1, for any K and dimension : J. (+ equation) building upon Wang's and Yoshida's *I*-adic results.

Construction of $(\Omega^1)^{\rho}_{\mathcal{L}}$

Given a line $\mathcal{L} \subset M_{dR}(\pi)$, we define

 $(\Omega^1)^
ho_{\mathcal L}\subset \Omega^1(\Sigma^n)^
ho$

the pre-image of $\mathcal{L}^{\perp} \otimes \pi^* \subset \mathrm{H}^1_{\mathrm{dR}}(\Sigma^n)^{\rho}.$

By definition, it sits in an exact sequence

$$0 o \mathscr{O}(\Sigma^n)^
ho o (\Omega^1)^
ho_{\mathcal{L}} o \pi^* o 0$$

which dually gives

$$0 \to \pi \to ((\Omega^1)^{
ho}_{\mathcal{L}})^* \to (\mathscr{O}(\Sigma^n)^{
ho})^* \to 0$$

Main Goal

Motivation

Some aspects of the *p*-adic local Langlands correspondence should be visible in the cohomology of vector bundles on the coverings Σ^n .

We will illustrate this principle :

- today, by studying the structure sheaves \mathscr{O}_{Σ^n} and the differential forms $\Omega^1_{\Sigma^n} \cong \mathscr{O}_{\Sigma^n}(-2)$,
- **②** next time, by looking at integral structures of $\mathcal{O}_{\Sigma^1}(-1)$ and their associated representations in the mod p setting.

Framework

- Let L/\mathbb{Q}_p finite, we will study the following kind of representations of $G = GL_2(\mathbb{Q}_p)$ on L-vector spaces
 - Representations on *L*-Banach spaces which are unitary (with a *G*-lattice Θ) and admissible $((\Theta/\varpi_L)^H$ is finite dimensional for any open $H \subset G$),
 - Output: Contract of the second sec
- To a *L*-Banach space representation Π , we can associate a smooth one Π^{lisse} (which is trivial most of the time) and a locally analytic one Π^{an} (which is dense in Π).

p-adic local Langlands : The Banach space side

An irreducible Banach space representation of G is supersingular if it is not a quotient of the induction of a character of the Borel.

Theorem (Colmez, Paskunas, Dospinescu...) We have bijections Π , V inverse to each other

 $\{\text{supersingular representations}\} \xleftarrow[]{V}{\sqcap} \{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_2(L) \text{ continous irreducible} \}$

The set $\mathcal{V}(\pi)$

Recall we have fixed π smooth supercuspidal, consider

 $\mathcal{V}(\pi) := \{ \Pi : \Pi^{lisse} \cong \pi \}$

Theorem (Colmez, Emerton)

For $\Pi \in \mathcal{V}(\pi)$, $V(\Pi)$ is de Rham with Hodge-Tate weights (0,1) and

 $\mathcal{V}(\pi) \cong \mathbb{P}(M_{dR}(\pi))$

The structure of $\mathcal{V}(\pi)$

To explain the interpretation of $\mathcal{V}(\pi)$ in terms of the correspondence, we need the following result :

Theorem (Colmez-Fontaine)

We have an equivalence of categories $V \mapsto D_{pst}(V)$ between

- de Rham representations,
- **2** and weakly admissible (technical condition) filtered (φ , N, $\mathcal{G}_{\mathbb{Q}_p}$)-modules.
- For $\Pi \in \mathcal{V}(\pi)$ corresponding to $\mathcal{L} \subset M_{dR}(\pi)$,

•
$$\pi \rightsquigarrow (\varphi, N, \mathcal{G}_{\mathbb{Q}_p})$$
-module on $D_{pst}(V(\Pi))$,

2 $\mathcal{L} \rightsquigarrow$ Hodge filtration on $D_{pst}(V(\Pi))$,

Locally analytic vectors

Given a line $\mathcal{L} \subset M_{dR}(\pi)$ corresponding to $\Pi_{\mathcal{L}} \in \mathcal{V}(\pi)$, we have naturally

$$0 o \pi o \Pi_{\mathcal{L}}^{an} o \Pi_{\mathcal{L}}^{an} / \pi o 0$$

where $\Pi_{\mathcal{L}}^{an}/\pi$ is absolutely irreducible by a result of Colmez.

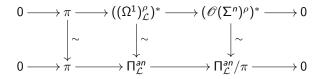
Recall also that we have an exact sequence (with $\rho = JL(\pi)$)

$$0 o \pi o ((\Omega^1)^{
ho}_{\mathcal{L}})^* o (\mathscr{O}(\Sigma^n)^{
ho})^* o 0$$

$\mathcal{V}(\pi)$ in the De Rham complex of Σ^n

Theorem (Dospinescu-Le Bras)

We have a commutative diagram with exact horizontal lines and isomorphic vertical maps :



Some integral results in level 1

- For n = 1, we even have a semi-stable model for Σ^1 and then an integral structure $\Omega^1(\log)$ for $\Omega^1_{\Sigma^1}$.
- With similar constructions on $\Omega^1(\log)$, Lue Pan constructs a unitary Banach space-representation $B(\pi, \mathcal{L})$ conjectured to be $\Pi_{\mathcal{L}}$.

A global curve

Consider a quaternion algebra B/\mathbb{Q} split at infinity and ramified at p (i.e. $B(\mathbb{R}) \cong M_2(\mathbb{R}), B(\mathbb{Q}_p) \cong D$).

For any sufficiently small compact open subgroup $K_f \subset B^*(\mathbb{A}_f)$, we can define a smooth proper curve Sh_{K_f} over \mathbb{Q} with \mathbb{C} -points :

$$\mathsf{Sh}_{\mathcal{K}_f}(\mathbb{C}) = B^*(\mathbb{Q}) ackslash ((\mathbb{C} ackslash \mathbb{R}) imes B^*(\mathbb{A}_f) / \mathcal{K}_f)$$

Global uniformization

We have a finite set :

$$X(K_f) = B^*(\mathbb{Q}) ackslash B^*(\mathbb{A}_f) / K_f \cong \coprod_i \Gamma_i ackslash \operatorname{\mathsf{GL}}_2(\mathbb{R})$$

which gives the following description of the Shimura curve

$$\mathsf{Sh}_{K_f}\cong\coprod_i \Gamma_i \setminus (\mathbb{C} \setminus \mathbb{R})$$

Local curve

For a local version, take an integer n and a subgroup K_f of the form

$$K_f = \mathcal{O}_D^* K^p \ (n = 0), \quad K_f = (1 + \mathfrak{m}_D^n) K^p \ (n \ge 1)$$

with $K^p \subset B^*(\mathbb{A}^p_f)$ sufficiently small.

We can define a local Shimura curve $Sh_n(K^p) = (Sh_{K_f} \otimes_{\mathbb{Q}} \mathbb{Q}_p)^{an}$.

Cerednik-Drinfeld uniformization

Now, consider the quaternion algebra \overline{B} ramified at infinity, split at p and with the same invariant as B at any other places, then $K^p \subset B^*(\mathbb{A}_f^p) = \overline{B}^*(\mathbb{A}_f^p)$.

Once again, write

$$X(K^p) = \overline{B}^*(\mathbb{Q}) ackslash \overline{B}^*(\mathbb{A}_f^p) / K^p \cong \coprod_i \Gamma_i ackslash G$$

Theorem (Cerednik, Drinfeld)

We have :

$$\operatorname{Sh}_n(K^p)\cong \coprod_i \Gamma_i \setminus \Sigma^n$$

compatible with n, K^p and the action of the Hecke algebra T.

Consequences on differential forms

By the Hochschild-Serre spectral sequence (and Σ^n is Stein), we have :

$$\Omega^1(\mathsf{Sh}_n(K^p)) \cong \bigoplus_i (\Omega^1(\Sigma^n))^{\Gamma_i}$$

which gives

Lemma

$$\Omega^{1}(\mathsf{Sh}_{n}(\mathcal{K}^{p}))^{\rho} \cong \mathsf{Hom}_{G}^{cont}((\Omega^{1}(\Sigma^{n})^{\rho})^{*}, \mathrm{LA}(X(\mathcal{K}^{p}))$$

" Similarly "

$$\mathrm{H}^{1}_{\mathrm{dR}}(\mathsf{Sh}_{n}(\mathcal{K}^{p}))^{\rho} \cong \mathsf{Hom}^{cont}_{G}((\mathrm{H}^{1}_{\mathrm{dR},c}(\Sigma^{n})^{\rho^{*}}, \mathrm{LC}(X(\mathcal{K}^{p}))$$

Local-global compatibility

Given a prime ideal \mathfrak{p} on \mathcal{T} , we can describe :

- LC(X(K^p))[p] and LA(X(K^p))[p] via the local-global compatibility à la Emerton,
- **2** $\Omega^1(Sh_n(K^p))^{\rho}[\mathfrak{p}]$ in terms of automorphic representations.

In particular, we can choose ${\mathfrak p}$ so that

 $\mathrm{LA}(X(\mathcal{K}^p))[\mathfrak{p}] \cong (\Pi_{\mathcal{L}}^{an})^r \ (r > 0), \quad \Omega^1(\mathsf{Sh}_n(\mathcal{K}^p))^{\rho}[\mathfrak{p}] \neq 0$

Construction of $\alpha : (\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse})^* \to \mathscr{O}(\Sigma^n)$

As an application,

Corollary

There is a nonzero map $\alpha : (\Pi_{\mathcal{L}}^{an})^* \to \Omega(\Sigma^n)$ and it induces another nonzero map (look at the smooth vectors of the duals)

$$\alpha: (\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse})^* \to \mathscr{O}(\Sigma^n).$$

A similar argument shows that

Corollary

$$\dim_L \operatorname{Hom}_G(\pi, \operatorname{H}^1_{\operatorname{dR}, c}(\Sigma^n)^{\rho}) = 2$$

 α is injective (irreducibility of $\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{\textit{lisse}}$) and it remains to show that it is surjective.

The operator ∂

This crucial step is one of the most technical points of the paper.

Theorem

There exists a structure of $\mathscr{O}(\mathbb{H})$ -module on $(\prod_{\mathcal{L}}^{an}/\prod_{\mathcal{L}}^{lisse})^*$ which makes α linear.

A key step is to define the operator of multiplication by the variable $z \in \mathscr{O}(\mathbb{H})$ via the action of $\mathfrak{g} = \text{Lie}(G) \cong M_2(\mathbb{Q}_p)$ on $(\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse})^*$.

Lemma

There exists a unique operator on $(\Pi_{L}^{an}/\Pi_{L}^{lisse})^*$ such that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \mathsf{Id} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \circ \partial.$$

Morita duality

To show that ∂ the right operator, we need the following description of $\mathscr{O}(\mathbb{H})$:

Theorem (Morita)

Write St^{an} for $\operatorname{LA}(\mathbb{P}^1(\mathbb{Q}_p))/\mathbb{1}$, we have a *G*-equivariant isomorphism :

$$\mu \in (\mathsf{St}^{\mathsf{an}})^* \mapsto f_\mu(z) := \int_{\mathbb{P}^1(\mathbb{Q}_p)} rac{1}{z-x} \mu(x) dz \in \Omega^1(\mathbb{H})$$

We first show that we can define the action of $\frac{1}{z-x}$ for $x \in \mathbb{Q}_p$ via ∂ and then that the right integrals converge.

A topological lemma

The rest of the talk will try to explain this point.

Lemma

The map α has dense image.

The result will then follow this general topological statement :

Lemma

Consider the following data

- a Stein rigid variety X,
- **2** a Frechet $\mathcal{O}(X)$ -module M,
- **(a)** a finite projective $\mathscr{O}(X)$ -module N,

then any continous $\mathscr{O}(X)$ -linear map with dense image $M \to N$ is surjective.

Reduction to vector bundles

Consider :

$$0 \to \overline{\mathrm{Im}(\alpha)} \to \mathscr{O}(\Sigma^n)^\rho \to \mathscr{O}(\Sigma^n)^\rho / \overline{\mathrm{Im}(\alpha)} \to 0$$

It yields an exact sequence of coherent sheaves (\mathbb{H} is Stein)

$$0 o \mathscr{F} o \mathscr{O}^{
ho}_{\Sigma^n} o \mathscr{F}' o 0$$

If $\mathscr{O}(\Sigma^n)^{\rho}/\overline{\operatorname{Im}(\alpha)} \neq 0$, their torsion is then trivial, they are all vector bundles.

Transfer to the Lubin-Tate side

Recall that we have a *G*-torsor $\pi_{LT} : \mathcal{M}_{\infty} \to \mathcal{P}_{LT} \cong \mathbb{P}^1$ and a D^* -torsor $\pi_{Dr} : \mathcal{M}_{\infty} \to \mathcal{P}_{Dr} \cong \mathbb{H}$.

As
$$\mathscr{O}_{\Sigma^n}^{\rho} = (\rho^* \otimes \mathscr{O}_{\mathcal{M}_{\infty}})^{D^*} = (\pi_{Dr,*}\pi_{LT}^*(\rho^* \otimes \mathscr{O}_{\mathbb{P}^1}))^{D^*}$$
, we have :
 $(\pi_{LT,*}\pi_{Dr}^*\mathscr{O}_{\Sigma^n}^{\rho})^{G} = (\pi_{LT,*}(\rho^* \otimes \mathscr{O}_{\mathcal{M}_{\infty}}))G = \rho^* \otimes \mathscr{O}_{\mathbb{P}^1}$

It is suffiscient to prove that $\rho^* \otimes \mathscr{O}_{\mathbb{P}^1}$ is irreducible in $\operatorname{Bun}_{D^*}(\mathbb{P}^1)$.